28 research outputs found

    Systems consequences of amplicon formation in human breast cancer

    Get PDF
    Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer.Singapore. Agency for Science, Technology and ResearchNational Science Foundation (U.S.) (East Asia and Pacific Summer Institutes (OISE-1108282)

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Structural mutations in cancer: mechanistic and functional insights.

    No full text
    Next-generation sequencing (NGS) has enabled the comprehensive and precise identification of many somatic structural mutations in cancer. Analyses integrating point mutation information with data on rearrangements and copy number variation have revealed a higher-order organization of the seemingly random genetic events that lead to cancer. These meta-analyses provide a more refined view of the mutational mechanisms, genomic evolution, and combinations of mutations that contribute to tumorigenesis. Structural mutations, or genome-scale rearrangements of segments of DNA, may play a hitherto unappreciated role in cancer through their ability to move blocks of adjacent genes simultaneously, leading to concurrent oncogenic events. Moreover, whole-genome sequencing (WGS) data from tumors have revealed global rearrangements, such as those seen in the tandem duplicator phenotype and in chromothripsis, suggesting that massive rearrangements are a specific cancer phenotype. Taken together, the emerging data suggest that the chromosome structure itself functions as a systems oncogenic organizer

    Gene expression patterns in tissue microarray (TMA; EdgeSeq) versus The Cancer Genome Atlas (TCGA; RNA-seq).

    No full text
    Correlations in gene expression (log2 [adjCPM-UQ + 1]) by cancer type/subtype or in normal tissue for TMA EdgeSeq and TCGA RNA-seq were made for (A) human epidermal growth factor receptor (HER) family genes and immune-oncology markers of interest, (B) oncogenes of interest and (C) immune cell genes, cell cycle genes and cancer-associated fibroblast (CAF)-associated gene signatures. Expression is color-coded based on whether counts are approaching maximum (red) or minimum (blue) levels of detection. BC, breast cancer; EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1. BLCA, bladder carcinoma; COADREAD, colorectal adenocarcinoma; ER, estrogen receptor; ESCA, esophageal cancer; HNSC, head-neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LCC, large cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OC, ovarian cancer; PAAD, pancreatic adenocarcinoma; PD-1, programmed death protein 1; PD-L1, programmed death-ligand 1; PR, progesterone receptor; PRAD, prostate adenocarcinoma; THCA, thyroid cancer; TNBC, triple-negative breast cancer; UCEC, uterine corpus endometrial carcinoma.</p
    corecore