1,699 research outputs found

    Unification and limitations of error suppression techniques for adiabatic quantum computing

    Full text link
    While adiabatic quantum computation (AQC) possesses some intrinsic robustness to noise, it is expected that a form of error control will be necessary for large scale computations. Error control ideas developed for circuit-model quantum computation do not transfer easily to the AQC model and to date there have been two main proposals to suppress errors during an AQC implementation: energy gap protection and dynamical decoupling. Here we show that these two methods are fundamentally related and may be analyzed within the same formalism. We analyze the effectiveness of such error suppression techniques and identify critical constraints on the performance of error suppression in AQC, suggesting that error suppression by itself is insufficient for fault-tolerant, large-scale AQC and that a form of error correction is needed. This manuscript has been superseded by the articles, "Error suppression and error correction in adiabatic quantum computation I: techniques and challenges," arXiv:1307.5893, and "Error suppression and error correction in adiabatic quantum computation II: non-equilibrium dynamics," arXiv:1307.5892.Comment: 9 pages. Update replaces "Equivalence" with "Unification." This manuscript has been superseded by the two-article series: arXiv:1307.5892 and arXiv:1307.589

    A solar power system for an early Mars expedition

    Get PDF
    As NASA looks at missions that will expand human presence in the solar system, the power requirements for such missions need to be defined, developed and analyzed. One mission under consideration consists of a 40 day manned Mars surface expedition to perform science experiments. The mission time was centered around an aerocentric longitude (Ls) of 90 deg to lessen the probability of an occurrence of a local or planetary dust storm. The mission site was arbitrarily located at the Martian equator. The power requirements were assumed to be 40 kWe for life support and experiment power during the Martian day and 20 kWe for life support during the Martian night. A solar energy system consisting of roll-out amorphous silicon arrays and a hydrogen-oxygen regenerative fuel cell energy storage system was chosen for the study. The power available from a roll-out array, when plotted against time, approaches a cosine-like curve and depends on both array area and the amount of solar irradiance impinging on its horizontal surface. The array is sized to provide at least 20 KWe when the sun is 12.5 deg above the horizon and ramp up to 140 kWe peak power at Martian noon. In this configuration, the array is capable of supplying 40 KWe continuously to the user for the majority of the Martian day while supplying the excess energy to the electrolyzer portion of the energy storage system. A roll-out, pumped loop radiator system is used to dissipate the waste heat produced by the fuel cell. The power management and distribution system inverts the power from the individual solar array sub-modules and the fuel cell stacks and connects them to a 440 VAC single phase 20 kHz main bus. The total power system is comprised of 80 individual solar array modules with an integral bus and three energy storage modules consisting of fuel cell and electrolyzer stacks, reactant storage tanks, and a roll-out radiator. Power system mass, stowed volume, and deployed area were determined. Day/night power splits of 40/10 kWe, 40/30 kWe, and 40/40 kWe were also considered to determine the impact of a range of nighttime power requirements on the baseline system

    Minimax Quantum Tomography: Estimators and Relative Entropy Bounds

    Full text link
    © 2016 American Physical Society. A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/N) - in contrast to that of classical probability estimation, which is O(1/N) - where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states

    An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    Get PDF
    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared

    Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes

    Get PDF
    The voltage-sensing phosphatase (VSP) has changed the way we think about both cellular electrical activity and PIPs (phosphatidylinositol phosphates). Originally discovered in 1999 (Chen et al., 1999), these proteins were not recognized as electrically-controlled enzymes until 2005 (Murata et al., 2005). They constitute the first, and so far the only, example of an enzyme linking electrical signals at the plasma membrane to the catalysis of PIPs (Murata et al., 2005), a ubiquitous family of intracellular signaling molecules (Di Paolo and De Camilli, 2006; Balla, 2013). Before the discovery of VSP, there were no known direct links between the two. Textbook examples would represent this connection with arrows, alluding to indirect or “yet-to-be-defined” signaling pathways. Now we know that VSP serves as a direct connection between the electrical nature of the cell and PIPs, lipid second messengers that are critical for cell survival. However, many questions remain unanswered regarding VSP and its electrical regulation of cellular processes. With the discovery of VSP, the membrane potential must now be considered when studying PIP regulators. PIPs are involved in almost all aspects of cell physiology from survival, proliferation, and migration to pre-programed cell death (Di Paolo and De Camilli, 2006; Logothetis et al., 2010; Koch and Holt, 2012; Balla, 2013). For example, PIP concentrations are actively polarized in migrating cells with phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) on the leading edge and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) on the lagging edge (Leslie et al., 2008). These gradients in the concentration of PIPs are necessary for activation of Rac and Rho leading to cell motion. PIPs are also crucial for cell growth: PI(3,4,5)P3 activates the mTor cascade leading to increased protein, membrane, and nucleic acid production (Dibble and Manning,2013). Many human diseases have been associated with altered homeostasis of PIPs, including cancer, developmental disorders, and Alzheimer\u27s disease (Simpson and Parsons, 2001; McCrea and De Camilli, 2009; Hakim et al., 2012). Though the physiological relevance of VSP is not yet defined, it is still crucial to human health to understand how PIPs are regulated and that now includes VSP. All cells have an asymmetric composition of ions across their plasma membrane, which, combined with selective permeabilities for these ions, results in a difference in the electrical potential across their plasma membrane. This difference, called the membrane potential, constitutes a form of cell signaling and a source of energy, both driving many biological processes. This electrical potential difference powers neuronal excitability as well as more general processes like proliferation, migration, and development (Levin, 2007; Sundelacruz et al., 2009; Yao et al., 2011). Regulation by the membrane potential has long been the sole purview of ion channels and transporters and that has influenced what questions are asked regarding the changing potential. With our new knowledge of VSP, the changing membrane potential can directly signal the cell by modulating mTor and cell growth pathways, leading to abnormal growth or the M-current in sympathetic ganglion, leading to hyperexcitability. The articles in this Special Topic highlight several features of VSP including its unique activation, its similarities to other enzymes and its use as a versatile tool to study other proteins. In the review article by Hobiger and Friedrich (2015, p. 20), the authors compare the structural similarities and differences between the broader family of protein tyrosine phosphatases and one of its newest members, VSP. They suggest a catalytic mechanism based on this comparison. Castle et al. (2015, p. 63) investigate the activation mechanism of VSP by probing the C2 domain, the C-terminal domain of VSP that has been largely unrecognized before the recent crystal structures showed a direct contribution of the C2 residue Y522 into the active site. The work by Mavrantoni et al. (2015, p. 68) explores the techniques that are used to test VSP and address some of their limitations including the need for expensive electrophysiology equipment as well as the limitations of using channels as functional reporters. They take their methods and apply them to a chimera between the Ciona intestinalis VSP and human PTEN and show how the chimera allows for the investigation of PTEN using standard techniques but with the advantage of regulated activation, voltage. Beyond the molecular mechanism underlying VSP activity, Mori et al. (2015, p. 22) review the use of VSP as a relatively simple tool for manipulating PI(4,5)P2 concentrations in cells. They have used VSP to study the PI(4,5)P2 regulation of transient receptor potential canonical channels involved in receptor-operated calcium currents. Along the same lines, Rjasanow et al. (2015, p. 127) use VSP as a tool that gives them precise control over the PI(4,5)P2 concentrations in the membrane. These authors compared the relative PIP affinities between several ion channels. They also point out an important limitation that the channels must already have a known specificity for a particular PIP because VSP does not destroy PIPs in contrast to phospholipase C; instead, it generates multiple PIPs. All together, these articles underscore the features of VSP and expand our understanding of its function and utility. Though VSP remains relatively unknown to many, this nascent field has shown fast initial growth. The unique nature of these enzymes has inspired many to investigate their properties as well as take advantage of them. Many questions remain unanswered regarding VSP such as how the voltage sensor couples to the enzyme and whether the phosphatase domain is brought to the membrane for activation or whether a conformational change within the active site determines activation. We look forward to the studies that will address these and the many other questions that persist in this exciting field

    Reinterpretation of the substrate specificity of the voltage-sensing phosphatase during dimerization.

    Get PDF
    Voltage-sensing phosphatases (VSPs) cleave both 3- and 5-phosphates from inositol phospholipids in response to membrane depolarization. When low concentrations of Ciona intestinalis VSP are expressed in Xenopus laevis oocytes, the 5-phosphatase reaction can be observed during large membrane depolarizations. When higher concentrations are expressed, the 5-phosphatase activity is observed with smaller depolarizations, and the 3-phosphatase activity is revealed with strong depolarization. Here we ask whether this apparent induction of 3-phosphatase activity is attributable to the dimerization that has been reported when VSP is expressed at higher concentrations. Using a simple kinetic model, we show that these enzymatic phenomena can be understood as an emergent property of a voltage-dependent enzyme with invariant substrate selectivity operating in the context of endogenous lipid-metabolizing enzymes present in oocytes. Thus, a switch of substrate specificity with dimerization need not be invoked to explain the appearance of 3-phosphatase activity at high VSP concentrations

    SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    Get PDF
    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined
    corecore