While adiabatic quantum computation (AQC) possesses some intrinsic robustness
to noise, it is expected that a form of error control will be necessary for
large scale computations. Error control ideas developed for circuit-model
quantum computation do not transfer easily to the AQC model and to date there
have been two main proposals to suppress errors during an AQC implementation:
energy gap protection and dynamical decoupling. Here we show that these two
methods are fundamentally related and may be analyzed within the same
formalism. We analyze the effectiveness of such error suppression techniques
and identify critical constraints on the performance of error suppression in
AQC, suggesting that error suppression by itself is insufficient for
fault-tolerant, large-scale AQC and that a form of error correction is needed.
This manuscript has been superseded by the articles, "Error suppression and
error correction in adiabatic quantum computation I: techniques and
challenges," arXiv:1307.5893, and "Error suppression and error correction in
adiabatic quantum computation II: non-equilibrium dynamics," arXiv:1307.5892.Comment: 9 pages. Update replaces "Equivalence" with "Unification." This
manuscript has been superseded by the two-article series: arXiv:1307.5892 and
arXiv:1307.589