1,314 research outputs found

    Optical Conductivity in Mott-Hubbard Systems

    Full text link
    We study the transfer of spectral weight in the optical spectra of a strongly correlated electron system as a function of temperature and interaction strength. Within a dynamical mean field theory of the Hubbard model that becomes exact in the limit of large lattice coordination, we predict an anomalous enhancement of spectral weight as a function of temperature in the correlated metallic state and report on experimental measurements which agree with this prediction in V2O3V_2O_3. We argue that the optical conductivity anomalies in the metal are connected to the proximity to a crossover region in the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105 (1995

    Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems

    Full text link
    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the LISA, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard of recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V2O3V_2O_3. We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain an excellent agreement with the experimental data and present a detailed discussion on the role of magnetic frustration by studying the kk-resolved single particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce3Bi4Pt3Ce_3Bi_4Pt_3 and FeSiFeSi. The model can successfully explain the different energy scales that are associated to the thermal filling of the optical gap, which we also relate to corresponding changes in the density of states. The temperature dependence of the optical sum rule is obtained and its relevance for the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR

    Visual Cells Remember Earlier Applied Target: Plasticity of Orientation Selectivity

    Get PDF
    BACKGROUND: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. CONCLUSION/SIGNIFICANCE: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated

    Collective Excitations of Holographic Quantum Liquids in a Magnetic Field

    Full text link
    We use holography to study N=4 supersymmetric SU(Nc) Yang-Mills theory in the large-Nc and large-coupling limits coupled to a number Nf << Nc of (n+1)-dimensional massless supersymmetric hypermultiplets in the Nc representation of SU(Nc), with n=2,3. We introduce a temperature T, a baryon number chemical potential mu, and a baryon number magnetic field B, and work in a regime with mu >> T,\sqrt{B}. We study the collective excitations of these holographic quantum liquids by computing the poles in the retarded Green's function of the baryon number charge density operator and the associated peaks in the spectral function. We focus on the evolution of the collective excitations as we increase the frequency relative to T, i.e. the hydrodynamic/collisionless crossover. We find that for all B, at low frequencies the tallest peak in the spectral function is associated with hydrodynamic charge diffusion. At high frequencies the tallest peak is associated with a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The sound mode has a gap proportional to B, and as a result for intermediate frequencies and for B sufficiently large compared to T the spectral function is strongly suppressed. We find that the hydrodynamic/collisionless crossover occurs at a frequency that is approximately B-independent.Comment: 45 pages, 8 png and 47 pdf images in 22 figure

    The formation of professional identity in medical students: considerations for educators

    Get PDF
    &lt;b&gt;Context&lt;/b&gt; Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Objectives&lt;/b&gt; This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Implications&lt;/b&gt; A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron
    corecore