7 research outputs found

    19 F-Tagged metal binding pharmacophores for NMR screening of metalloenzymes

    No full text
    This study demonstrates the screening of a collection of twelve 19F-tagged metal-binding pharmacophores (MBPs) against the Zn(ii)-dependent metalloenzyme human carbonic anhydrase II (hCAII) by 19F NMR. The isomorphous replacement of Zn(ii) by Co(ii) in hCAII produces enhanced sensitivity and reveals the potential of 19F NMR-based techniques for metalloenzyme ligand discovery

    Structural Studies of Inhibitors with Clinically Relevant Influenza Endonuclease Variants

    No full text
    Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein–inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants

    Carboxylic Acid Isostere Derivatives of Hydroxypyridinones as Core Scaffolds for Influenza Endonuclease Inhibitors

    No full text
    Among the most important influenza virus targets is the RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, which is a critical component of the viral replication machinery. To inhibit the activity of this metalloenzyme, small-molecule inhibitors employ metal-binding pharmacophores (MBPs) that coordinate to the dinuclear Mn2+ active site. In this study, several metal-binding isosteres (MBIs) were examined where the carboxylic acid moiety of a hydroxypyridinone MBP is replaced with other groups to modulate the physicochemical properties of the compound. MBIs were evaluated for their ability to inhibit PAN using a FRET-based enzymatic assay, and their mode of binding in PAN was determined using X-ray crystallography

    Carboxylic Acid Isostere Derivatives of Hydroxypyridinones as Core Scaffolds for Influenza Endonuclease Inhibitors

    No full text
    Among the most important influenza virus targets is the RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, which is a critical component of the viral replication machinery. To inhibit the activity of this metalloenzyme, small-molecule inhibitors employ metal-binding pharmacophores (MBPs) that coordinate to the dinuclear Mn2+ active site. In this study, several metal-binding isosteres (MBIs) were examined where the carboxylic acid moiety of a hydroxypyridinone MBP is replaced with other groups to modulate the physicochemical properties of the compound. MBIs were evaluated for their ability to inhibit PAN using a FRET-based enzymatic assay, and their mode of binding in PAN was determined using X-ray crystallography
    corecore