21 research outputs found

    A multi-trophic marker approach reveals high feeding plasticity in Barents Sea under-ice fauna

    Get PDF
    Microalgae growing within and attached to the bottom of Arctic sea ice (sympagic algae) can serve as a nutritious food resource for animals inhabiting the sea-ice water interface (under-ice fauna), particularly during the bottom ice-algal bloom in spring. As a consequence, under-ice fauna is likely impacted by sea-ice decline and changes in ice-algal primary production. To investigate this, samples of pelagic (=PPOM) and ice-associated particulate organic matter (=IPOM) and the iceassociated amphipods Apherusa glacialis and Eusirus holmii, and polar cod (Boreogadus saida), collected below ridged sea ice at two locations with pronounced differences in productivity in the northern Barents Sea during May 2021, were assessed for their trophic marker content. Specifically, we investigated the composition of diatom- and dinoflagellate-produced fatty acids (FAs), pelagic and sympagic highly branched isoprenoid (HBI) lipids as well as sterols to determine the animals’ dietary preferences and trophic association to the sea-ice habitat during spring. Relative proportions of FAs differed strongly between PPOM and IPOM, indicating differences in species composition and degradation state between pelagic and sympagic habitats, respectively. FA signatures and sterol content of the consumers largely resembled known diet compositions with a strong reliance on diatom-derived carbon in A. glacialis, a higher degree of carnivory in E. holmii and evidence of Calanus-feeding in polar cod. Sympagic HBIs were detected at either low concentrations or not at all, in both producers and consumers, likely as a result of the very low abundance of their source diatoms. Pronounced trophic marker variability in A. glacialis collected at the highly productive shelf slope station versus the less productive central Arctic Basin station suggests a surprisingly high flexibility in carbon-source composition with a stronger reliance on pelagic food when available versus a higher importance of ice algal carbon when pelagic production is low. Nevertheless and despite the general lack (below detection limit) of sympagic HBIs in our dataset, high ice-algal biomass and elevated proportions of polyunsaturated FAs in IPOM compared to other seasons indicate that ice algae constitute a valuable nutritional carbon source as alternative to pelagic carbon during spring

    Winter Carnivory and Diapause Counteract the Reliance on Ice Algae by Barents Sea Zooplankton

    Get PDF
    The Barents Sea is a hotspot for environmental change due to its rapid warming, and information on dietary preferences of zooplankton is crucial to better understand the impacts of these changes on food-web dynamics. We combined lipid-based trophic marker approaches, namely analysis of fatty acids (FAs), highly branched isoprenoids (HBIs) and sterols, to compare late summer (August) and early winter (November/December) feeding of key Barents Sea zooplankters; the copepods Calanus glacialis, C. hyperboreus and C. finmarchicus and the amphipods Themisto libellula and T. abyssorum. Based on FAs, copepods showed a stronger reliance on a diatom-based diet. Phytosterols, produced mainly by diatoms, declined from summer to winter in C. glacialis and C. hyperboreus, indicating the strong direct linkage of their feeding to primary production. By contrast, C. finmarchicus showed evidence of year-round feeding, indicated by the higher winter carnivory FA ratios of 18:1(n-9)/18:1(n-7) than its larger congeners. This, plus differences in seasonal lipid dynamics, suggests varied overwintering strategies among the copepods; namely diapause in C. glacialis and C. hyperboreus and continued feeding activity in C. finmarchicus. Based on the absence of sea ice algae-associated HBIs (IP25 and IPSO25) in the three copepod species during both seasons, their carbon sources were likely primarily of pelagic origin. In both amphipods, increased FA carnivory ratios during winter indicated that they relied strongly on heterotrophic prey during the polar night. Both amphipod species contained sea ice algae-derived HBIs, present in broadly similar concentrations between species and seasons. Our results indicate that sea ice-derived carbon forms a supplementary food rather than a crucial dietary component for these two amphipod species in summer and winter, with carnivory potentially providing them with a degree of resilience to the rapid decline in Barents Sea (winter) sea-ice extent and thickness. The weak trophic link of both zooplankton taxa to sea ice-derived carbon in our study likely reflects the low abundance and quality of ice-associated carbon during late summer and the inaccessibility of algae trapped inside the ice during winter.</jats:p

    Essential omega‐3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean

    Get PDF
    Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web

    Changing circumpolar distributions and isoscapes of Antarctic krill: Indo‐Pacific habitat refuges counter long‐term degradation of the Atlantic sector

    Get PDF
    The Southern Ocean provides strong contrasts in rates and directions of change in temperature and sea ice between its sectors, but it is unknown how these affect plankton species that are distributed right around Antarctica. Here, we quantify the changing circumpolar distributions of Antarctic krill, based on the CHINARE 2013/14 circum-Antarctic expedition, plus independent analyses of compiled abundance data (KRILLBASE:1926–2016). In the 1920s–1930s, average krill densities in the Atlantic-Bellingshausen sector were eight times those in the other sectors. More recently, however, the concentration factor has dropped to only about twofold. This reflects a rebalancing broadly commensurate with climatic forcing: krill densities declined in the Atlantic Bellingshausen sector which has warmed and lost sea ice, densities may have increased in the Ross-Pacific sector which showed the opposite climatic trend, while densities showed no significant changes in the more stable Lazarev-Indian sectors. Such changes would impact circumpolar food webs, so to better define these we examined circumpolar trends of isotopic values in krill and other zooplankton based on the CHINARE cruise and a literature meta-analysis. Krill ή15N values ranged significantly between sectors from 2.21‰ (Indian) to 3.59‰ (Ross-Pacific), about half a trophic level lower than another key euphausiid, Thysanoessa macrura. These isoscapes form a baseline for interpreting the reliance of predators on euphausiids, within the varying food webs around the continent. Overall, we suggest that the Indo-Pacific sector has acted as a refuge for the circumpolar krill stock while conditions for them deteriorated rapidly in the Atlantic sector

    High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Get PDF
    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems

    Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters

    No full text
    Antarctic krill Euphausia superba is an ecological key species in the Southern Ocean and a major fisheries resource. The winter survival of age class 0 (AC0) krill is susceptible to changes in the sea-ice environment due to their association with sea ice and their need to feed during their first winter. However, our understanding of their overwintering diet and its variability is limited. We studied the spatio-temporal variability of the diet in 4 cohorts of AC0 krill in the Northern Weddell Sea during late winter 2013 using stomach contents, fatty acids (FAs) and bulk stable isotope analysis (BSIA). Stomach contents were dominated by diatoms in numbers and occasionally contained large volumes of copepods. Many of the prey species found in the stomachs were sea ice-associated. Our results show that the diet of overwintering AC0 krill varies significantly in space and time. Variability in stomach content composition was related to environmental factors, including chlorophyll a concentration, copepod abundance and sea-ice cover. In contrast, FA composition mainly varied between cohorts, indicating variation in the long-term diet. The condition of the AC0 krill was reflected in FA and BSIA analysis, suggesting that the availability of sea ice-derived food sources over a long period may impact the condition of developing AC0 krill significantly. The spatio-temporal availability of sea-ice resources is a potentially important factor for AC0 krill winter survival

    Spatial variation in carbon source use and trophic position of ringed seals across a latitudinal gradient of sea ice

    No full text
    Anthropogenic climate change is causing changes to the Arctic sea-ice system with implications for the magnitude and timing of Arctic pelagic and ice-associated (sympagic) primary production that influences food web interactions. Ringed seals (Pusa hispida) are generalist predators that, as a species experience vastly different icescapes from low to high-Arctic latitudes. Quantifying spatial variation in their diet can help us understand how changes in sea-ice dynamics affect trophic interactions in Arctic marine food webs. However, multiple complementary analytical tools to examine variation in carbon source use and trophic dynamics in the diet of ringed seals have not yet been applied across their latitudinal range in the Arctic. We conducted stable isotope analysis (ÎŽ13C and ÎŽ15N) and measured highly branched isoprenoid diatom lipid biomarkers of ringed seals from the low, intermediate, and high Arctic (from 61.1°N to 77.5°N) to investigate spatial variation in their carbon source use and trophic position in relation to sea-ice dynamics. Both ÎŽ13C and highly branched isoprenoids indicated that ringed seals from higher latitudes had more sympagic carbon in their diet (liver ÎŽ13C: −18.3 ± 0.2 ‰, HBI: 89.9 ± 2.08 %) than ringed seals at lower latitudes (liver ÎŽ13C: −21.1 ± 0.1 ‰, HBI: 22.0 ± 2.73 %). Ringed seal trophic position increased from the low (3.78 ± 0.02) to high (4.76 ± 0.03) Arctic, suggesting increased fish consumption or a different trophic structure coinciding with the latitudinal change in carbon source. Ringed seals demonstrated a clear shift from low to high Arctic in the relative contribution of phytoplanktonic vs sympagic primary production. These patterns are likely linked to the vastly different icescapes in these environments and demonstrate that shifts in primary producer composition and Arctic food webs can be identified in ringed seal diets. Information on these prey and energy shifts over large spatial scales also provides insights into potential future changes to Arctic ecosystem function with continued sea-ice decline
    corecore