17 research outputs found

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Investigation on Main Radiation Source at Operation Floor of Fukushima Daiichi Nuclear Power Station Unit 4

    No full text
    Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine

    Investigation on Main Radiation Source at Operation Floor of Fukushima Daiichi Nuclear Power Station Unit 4

    No full text
    Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine

    Investigation of Main Radiation Source above Shield Plug of Unit 3 at Fukushima Daiichi Nuclear Power Station

    No full text
    Pulse height distributions were measured using a CdZnTe detector inside a lead collimator to investigate main source producing high dose rates above the shield plugs of Unit 3 at Fukushima Daiichi Nuclear Power Station. It was confirmed that low energy photons are dominant. Concentrations of Cs-137 under 60 cm concrete of the shield plug were estimated to be between 8.1E+9 and 5.7E+10 Bq/cm2 from the measured peak count rate of 0.662 MeV photons. If Cs-137 was distributed on the surfaces of the gaps with radius 6m and with the averaged concentration of 5 points, 2.6E+10 Bq/cm2, total amount of Cs-137 is estimated to be 30 PBq

    Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog

    Get PDF
    Introduction: The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. Materials and methods: GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. Results: GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. Conclusion: The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy

    Dose effects of beta-tricalcium phosphate nanoparticles on biocompatibility and bone conductive ability of three-dimensional collagen scaffolds

    Get PDF
    Three-dimensional collagen scaffolds coated with beta-tricalcium phosphate (β-TCP) nanoparticles reportedly exhibit good bioactivity and biodegradability. Dose effects of β-TCP nanoparticles on biocompatibility and bone forming ability were then examined. Collagen scaffold was applied with 1, 5, 10, and 25 wt% β-TCP nanoparticle dispersion and designated TCP1, TCP5, TCP10, and TCP25, respectively. Compressive strength, calcium ion release and enzyme resistance of scaffolds with β-TCP nanoparticles applied increased with β-TCP dose. TCP5 showed excellent cell-ingrowth behavior in rat subcutaneous tissue. When TCP10 was applied, osteoblastic cell proliferation and rat cranial bone augmentation were greater than for any other scaffold. The bone area of TCP10 was 7.7-fold greater than that of non-treated scaffold. In contrast, TCP25 consistently exhibited adverse biological effects. These results suggest that the application dose of β-TCP nanoparticles affects the scaffold bioproperties; consequently, the bone conductive ability of TCP10 was remarkable
    corecore