585 research outputs found
Proton-nucleus total reaction cross sections in the optical limit Glauber theory: Subtle dependence on the equation of state of nuclear matter
We calculate the proton-nucleus total reaction cross sections at different
energies of incident protons within the optical limit approximation of the
Glauber theory. The isospin effect has been taken into account. The nucleon
distribution is obtained in the framework of macroscopic nuclear models in a
way depending on the equation of state of uniform nuclear matter near the
saturation density. We find that at an energy of order 40 MeV, the reaction
cross section calculated for neutron- rich isotopes significantly increases as
the parameter L characterizing the density dependence of the symmetry energy
increases, while at energies of order 300 and 800 MeV, it is almost independent
of L. This is a feature of the optical limit Glauber theory in which an
exponential dependence of the reaction cross section on the neutron skin
thickness remains when the total proton-neutron cross section is small enough.Comment: 5 pages, 4 figure
The Earliest Optical Observations of GRB 030329
We present the earliest optical imaging observations of GRB 030329 related to
SN 2003dh. The burst was detected by the HETE-2 satellite at 2003 March 29,
11:37:14.67 UT. Our wide-field monitoring started 97 minutes before the trigger
and the burst position was continuously observed. We found no precursor or
contemporaneous flare brighter than () in 32 s (64 s) timescale
between 10:00 and 13:00 UT. Follow-up time series photometries started at
12:51:39 UT (75 s after position notice through the GCN) and continued for more
than 5 hours. The afterglow was at min after burst.
Its fading between 1.2 and 6.3 hours is well characterized by a single
power-law of the form in -band. No significant flux variation was
detected and upper limits are derived as % in
minutes to hours timescales and % in seconds to
minutes timescales. Such a featureless lightcurve is explained by the smooth
distribution of circumburst medium. Another explanation is that the optical
band was above the synchrotron cooling frequency where emergent flux is
insensitive to the ambient density contrasts. Extrapolation of the afterglow
lightcurve to the burst epoch excludes the presence of an additional flare
component at minutes as seen in GRB 990123 and GRB 021211.Comment: ApJL, in pres
Localization and characterization of the inhibitory Ca2+-binding site of Physarum polycephalum myosin II.
A myosin II is thought to be the driving force of the fast cytoplasmic streaming in the plasmodium of Physarum polycephalum. This regulated myosin, unique among conventional myosins, is inhibited by direct Ca2+ binding. Here we report that Ca2+ binds to the first EF-hand of the essential light chain (ELC) subunit of Physarum myosin. Flow dialysis experiments of wild-type and mutant light chains and the regulatory domain revealed a single binding site that shows moderate specificity for Ca2+. The regulatory light chain, in contrast to regulatory light chains of higher eukaryotes, is unable to bind divalent cations. Although the Ca2+-binding loop of ELC has a canonical sequence, replacement of glutamic acid to alanine in the -z coordinating position only slightly decreased the Ca2+ affinity of the site, suggesting that the Ca2+ coordination is different from classical EF-hands; namely, the specific "closed-to-open" conformational transition does not occur in the ELC in response to Ca2+. Ca2+- and Mg2+-dependent conformational changes in the microenvironment of the binding site were detected by fluorescence experiments. Transient kinetic experiments showed that the displacement of Mg2+ by Ca2+ is faster than the change in direction of cytoplasmic streaming; therefore, we conclude that Ca2+ inhibition could operate in physiological conditions. By comparing the Physarum Ca2+ site with the well studied Ca2+ switch of scallop myosin, we surmise that despite the opposite effect of Ca2+ binding on the motor activity, the two conventional myosins could have a common structural basis for Ca2+ regulation
Magnetic and Dielectric Properties in Multiferroic Cu3Mo2O9 under High Magnetic Fields
The magnetic and dielectric properties under high magnetic fields are studied
in the single crystal of Cu3Mo2O9. This multiferroic compound has distorted
tetrahedral spin chains. The effects of the quasi-one dimensionality and the
geometrical spin frustration are expected to appear simultaneously. We measure
the magnetoelectric current and the differential magnetization under the pulsed
magnetic field up to 74 T. We also measure the electric polarization versus the
electric field curve/loop under the static field up to 23 T. Dielectric
properties change at the magnetic fields where the magnetization jumps are
observed in the magnetization curve. Moreover, the magnetization plateaus are
found at high magnetic fields.Comment: 6 pages, 3 figures, in press in JPS Conf. Proc. as a part of SCES2013
Proceeding
A Start-Timing Detector for the Collider Experiment PHENIX at RHIC-BNL
We describe a start-timing detector for the PHENIX experiment at the
relativistic heavy-ion collider RHIC. The role of the detector is to detect a
nuclear collision, provide precise time information with an accuracy of 50ps,
and determine the collision point along the beam direction with a resolution of
a few cm. Technical challenges are that the detector must be operational in a
wide particle-multiplicity range in a high radiation environment and a strong
magnetic field. We present the performance of the prototype and discuss the
final design of the detector.Comment: 12 pages, LaTeX, 9 gif and 4 ps figures. Submitted to NIM
Nuclear transparencies for nucleons, knocked-out under various semi-inclusive conditions
Using hadron dynamics we calculate nuclear transparencies for protons,
knocked-out in high-, semi-inclusive reactions. Predicted transparencies
are, roughly half a standard deviation above the NE18 data. The latter contain
the effects of binned proton missing momenta and mass, and of finite detector
acceptances. In order to test sensitivity we compare computed transparencies
without restrictions and the same with maximal cuts for missing momenta and the
electron energy loss. We find hardly any variation, enabling a meaningful
comparison with data and predictions based on hadron dynamics. Should
discrepancies persist in high-statistics data, the above may with greater
confidence be attributed to exotic components in the description of the
outgoing proton.Comment: 13 pages + 3 figsin appended PS file, report # WIS-94/43/Oct-P
Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field
We report on magnetization, sound velocity, and magnetocaloric-effect
measurements of the Ising-like spin-1/2 antiferromagnetic chain system
BaCoVO as a function of temperature down to 1.3 K and applied
transverse magnetic field up to 60 T. While across the N\'{e}el temperature of
K anomalies in magnetization and sound velocity confirm the
antiferromagnetic ordering transition, at the lowest temperature the
field-dependent measurements reveal a sharp softening of sound velocity
and a clear minimum of temperature at T,
indicating the suppression of the antiferromagnetic order. At higher fields,
the curve shows a broad minimum at T, accompanied by a
broad minimum in the sound velocity and a saturation-like magnetization. These
features signal a quantum phase transition which is further characterized by
the divergent behavior of the Gr\"{u}neisen parameter . By contrast, around the critical field, the
Gr\"{u}neisen parameter converges as temperature decreases, pointing to a
quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea
Formula for proton-nucleus reaction cross section at intermediate energies and its application
We construct a formula for proton-nucleus total reaction cross section as a
function of the mass and neutron excess of the target nucleus and the proton
incident energy. We deduce the dependence of the cross section on the mass
number and the proton incident energy from a simple argument involving the
proton optical depth within the framework of a black sphere approximation of
nuclei, while we describe the neutron excess dependence by introducing the
density derivative of the symmetry energy, L, on the basis of a radius formula
constructed from macroscopic nuclear models. We find that the cross section
formula can reproduce the energy dependence of the cross section measured for
stable nuclei without introducing any adjustable energy dependent parameter. We
finally discuss whether or not the reaction cross section is affected by an
extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference
- …