6,896 research outputs found

    Creation of a brane world with Gauss-Bonnet term

    Full text link
    We study a creation of a brane world using an instanton solution. We analyze a brane model with a Gauss-Bonnet term in a bulk spacetime. The curvature of 3-brane is assumed to be closed, flat, or open. We construct instanton solutions with branes for those models, and calculate the value of the actions to discuss an initial state of a brane universe.Comment: 9 pages, 10 figure

    Tradeoff Analysis of Delay-Power-CSIT Quality of Dynamic BackPressure Algorithm for Energy Efficient OFDM Systems

    Full text link
    In this paper, we analyze the fundamental power-delay tradeoff in point-to-point OFDM systems under imperfect channel state information quality and non-ideal circuit power. We consider the dynamic back- pressure (DBP) algorithm, where the transmitter determines the rate and power control actions based on the instantaneous channel state information (CSIT) and the queue state information (QSI). We exploit a general fluid queue dynamics using a continuous time dynamic equation. Using the sample-path approach and renewal theory, we decompose the average delay in terms of multiple unfinished works along a sample path, and derive an upper bound on the average delay under the DBP power control, which is asymptotically accurate at small delay regime. We show that despite imperfect CSIT quality and non-ideal circuit power, the average power (P) of the DBP policy scales with delay (D) as P = O(Dexp(1/D)) at small delay regime. While the impacts of CSIT quality and circuit power appears as the coefficients of the scaling law, they may be significant in some operating regimes.Comment: 30 page

    Topological Chern-Simons Sigma Model

    Full text link
    We consider topological twisting of recently constructed Chern-Simons-matter theories in three dimensions with N=4 or higher supersymmetry. We enumerate physically inequivalent twistings for each N, and find two different twistings for N=4, one for N=5,6, and four for N=8. We construct the two types of N=4 topological theories, which we call A/B-models, in full detail. The A-model has been recently studied by Kapustin and Saulina. The B-model is new and it consists solely of a Chern-Simons term of a complex gauge field up to BRST-exact terms. We also compare the new theories with topological Yang-Mills theories and find some interesting connections. In particular, the A-model seems to offer a new perspective on Casson invariant and its relation to Rozansky-Witten theory.Comment: 31 pages, no figure; v2. references adde

    Beware the Anomalous Portal Vein

    Get PDF
    Portal vein thrombosis is an unusual potential complication of liver resection. In our case it was due to ligation of the right branch of the portal vein during right hepatectomy in a patient without portal vein bifurcation. Hepatic angiography can delineate this abnormality and influence the choice of surgical management

    Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages

    Full text link
    Apoptosis occurs at an extraordinary rate in the human body and the effective clearance of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the contribution and impact of this process in bone is unclear. Bone formation requires that bone marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti‐inflammatory cytokine interleukin‐10 (IL‐10) exhibited increased efferocytosis of apBMSCs compared to vehicle treated macrophages. Additionally, IL‐10 increased anti‐inflammatory M2‐like macrophages (CD206+), and further enhanced efferocytosis within the CD206+ population. Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL‐10‐mediated shift in M2 macrophage polarization and diminished IL‐10‐directed efferocytosis of apBMSCs by macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA from macrophages co‐cultured with apoptotic bone cells showed increased secretion of monocyte chemotactic protein 1/chemokine (C‐C motif) ligand 2 (MCP‐1/CCL2) and transforming growth factor beta 1 (TGF‐β1) and increased ccl2 gene expression. In conclusion, IL‐10 increases M2 macrophage polarization and enhances macrophage‐mediated engulfment of apBMSCs in a STAT3 phosphorylation‐dependent manner. After engulfment of apoptotic bone cells, macrophages secrete TGF‐β1 and MCP‐1/CCL2, factors which fuel the remodeling process. A better understanding of the role of macrophage efferocytosis as it relates to normal and abnormal bone turnover will provide vital information for future therapeutic approaches to treat bone related diseases. J. Cell. Biochem. 117: 2697–2706, 2016. © 2016 Wiley Periodicals, Inc.The process of efferocytosis (clearance of apoptotic cells) has been characterized in various tissues but the role of efferocytosis in the bone microenvironment is unclear. Bone marrow macrophage efferocytosis of apoptotic osteoblastic cells was enhanced by interleukin‐10 in a STAT‐3 dependent manner and resulted in increased production of TGF‐β1 and CCL‐2. The process of efferocytosis is likely important in bone remodeling and osseous wound healing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134491/1/jcb25567.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134491/2/jcb25567_am.pd

    Effects of Variable Newton Constant During Inflation

    Full text link
    In this paper the effects of time-dependent Newton constant G during inflation are studied. We present the formalism of curvature perturbations in an inflationary system with a time-dependent Newton constant. As an example we consider a toy model in which G undergoes a sudden change during inflation. By imposing the appropriate matching conditions the imprints of this sharp change in G on curvature perturbation power spectrum are studied. We show that if G increases (decreases) during the transition the amplitude of curvature perturbations on large scales decreases (increases). In our model with a sudden change in G a continuous sinusoidal modulations on curvature power spectrum is induced. However, in a realistic scenario in which the change in G has some finite time scale we expect these sinusoidal modulations to be damped on short scales. The generated features may be used to explain the observed glitches on CMB power spectrum. This puts a bound on ΔG\Delta G during inflation of roughly the same order as current bounds on ΔG\Delta G during the entire observed age of the universe.Comment: 15 pages, 2 figures. Typos fixed, new references added, conforms with the journal versio

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure

    Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v.This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4−12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50−60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionally incorporated phosphorus removal. A temperature reduction of 6 °C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and nonylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne−1 d−1) identified in this study, of up to seven times, suggests that there is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.Public Utilities Board (Singapore), Anglian Water Ltd, Severn Trent Water Ltd, Thames Water Utilities Ltd, United Utilities 393 Plc and Yorkshire Water Services

    Deep-learned estimation of uncertainty in measurements of apparent diffusion coefficient from whole-body diffusion-weighted MRI.

    Get PDF
    PURPOSE: To use deep learning to calculate the uncertainty in apparent diffusion coefficient (σADC) voxel-wise measurements to clinically impact the monitoring of treatment response and improve the quality of ADC maps. MATERIALS AND METHODS: We use a uniquely designed diffusion-weighted imaging (DWI) acquisition protocol that provides gold-standard measurements of σADC to train a deep learning model on two separate cohorts: 16 patients with prostate cancer and 28 patients with mesothelioma. Our network was trained with a novel cost function, which incorporates a perception metric and a b-value regularisation term, on ADC maps calculated by combinations of 2 or 3 b-values (e.g. 50/600/900, 50/900, 50/600, 600/900 s/mm2). We compare the accuracy of the deep-learning based approach for estimation of σADC with gold-standard measurements. RESULTS: The model accurately predicted the σADC for every b-value combination in both cohorts. Mean values of σADC within areas of active disease deviated from those measured by the gold-standard by 4.3% (range, 2.87-6.13%) for the prostate and 3.7% (range, 3.06-4.54%) for the mesothelioma cohort. We also showed that the model can easily be adapted for a different DWI protocol and field-of-view with only a few images (as little as a single patient) using transfer learning. CONCLUSION: Deep learning produces maps of σADC from standard clinical diffusion-weighted images (DWI) when 2 or more b-values are available

    Formation of a Massive Black Hole at the Center of the Superbubble in M82

    Get PDF
    We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations of the central region (about 450 pc in radius) of M82 with the Nobeyama Millimeter Array, and have successfully imaged a molecular superbubble and spurs. The center of the superbubble is clearly shifted from the nucleus by 140 pc. This position is close to that of the massive black hole (BH) of >460 Mo and the 2.2 micron secondary peak (a luminous supergiant dominated cluster), which strongly suggests that these objects may be related to the formation of the superbubble. Consideration of star formation in the cluster based on the infrared data indicates that (1) energy release from supernovae can account for the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs available for building-up the massive BH may be much higher than 460 Mo, and (3) it is possible to form the middle-mass BH of 100-1000 Mo within the timescale of the superbubble. We suggest that the massive BH was produced and is growing in the intense starburst region.Comment: 9 pages, 3 figures, to appear in ApJ Lette
    corecore