
Computers in Biology and Medicine 149 (2022) 106091

Available online 13 September 2022
0010-4825/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Deep-learned estimation of uncertainty in measurements of apparent 
diffusion coefficient from whole-body diffusion-weighted MRI 

Konstantinos Zormpas-Petridis a, Nina Tunariu a,b, David J. Collins a, Christina Messiou a,b, 
Dow-Mu Koh a,b, Matthew D. Blackledge a,* 

a Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom 
b Department of Radiology, The Royal Marsden National Health Service Foundation Trust, Surrey, United Kingdom  

A B S T R A C T   

Purpose: To use deep learning to calculate the uncertainty in apparent diffusion coefficient (σADC) voxel-wise measurements to clinically impact the monitoring of 
treatment response and improve the quality of ADC maps. 
Materials and methods: We use a uniquely designed diffusion-weighted imaging (DWI) acquisition protocol that provides gold-standard measurements of σADC to 
train a deep learning model on two separate cohorts: 16 patients with prostate cancer and 28 patients with mesothelioma. Our network was trained with a novel cost 
function, which incorporates a perception metric and a b-value regularisation term, on ADC maps calculated by combinations of 2 or 3 b-values (e.g. 50/600/900, 
50/900, 50/600, 600/900 s/mm2). We compare the accuracy of the deep-learning based approach for estimation of σADC with gold-standard measurements. 
Results: The model accurately predicted the σADC for every b-value combination in both cohorts. Mean values of σADC within areas of active disease deviated from 
those measured by the gold-standard by 4.3% (range, 2.87–6.13%) for the prostate and 3.7% (range, 3.06–4.54%) for the mesothelioma cohort. We also showed that 
the model can easily be adapted for a different DWI protocol and field-of-view with only a few images (as little as a single patient) using transfer learning. 
Conclusion: Deep learning produces maps of σADC from standard clinical diffusion-weighted images (DWI) when 2 or more b-values are available.   

1. Introduction 

Whole-body diffusion-weighted MRI (WB-DWI) [1] provides un
precedented disease visualisation for the diagnosis and response 
assessment of bone metastasis from advanced prostate [2–5] and breast 
[6] cancers (APC and ABC respectively). Furthermore, it has recently 
been incorporated into guidelines for the evaluation of myeloma [7–10]. 
In addition to the high contrast between tumour and normal bone 
marrow on DWI to facilitate disease detection, the technique is also able 
to provide a surrogate measurement of tumour cellularity in the form of 
the Apparent Diffusion Coefficient (ADC), which is derived by sensitis
ing images to water diffusion using two or more ‘b-values’ [2] (units 
mm2/s). As DWI is non-invasive, non-ionising and doesn’t involve the 
use of intravenous contrast agents, clinical evidence suggests that 
monitoring ADC changes may provide a biomarker of tumour response 
to novel anti-cancer therapies [11]. 

However, an important characteristic of any successful tumour 
response biomarker is that the uncertainty of derived measurements be 
known if it is to be used for assessing individual patients in personalised 
treatment paradigms [12]. This is conventionally achieved through 
dedicated double-baseline measurements [13–16], whereby patients are 

asked to repeat the same MRI experiment, often in a span of days, twice 
without medical intervention. Therefore, such studies are all too rare 
due to increased study costs, hospital capacity limitations and increased 
patient burden. 

To account for these issues, a recently developed methodology has 
demonstrated that it is possible to statistically model ADC measurement 
uncertainty, σADC, within each imaging exam and for each voxel [17], 
providing a patient-derived estimate of measurement precision. This is 
achieved using a minor alteration to currently employed clinical 
WB-DWI protocols: A conventional diffusion-weighted image consists of 
taking multiple acquisitions for each b-value at the same anatomical 
location, and taking an average to produce an image with improved 
signal-to-noise ratio (SNR) [2] (we denote the number of excitations 
acquired for a particular b-value as “NEX”, such that for a protocol with 
three averages and three diffusion-encoding gradient directions per 
average, NEX = 9). To accurately calculate σADC, however, the individ
ual excitation images (NEX = 1) should be used in statistical modelling 
of ADC with weighted linear least squares fitting. The article demon
strated that maps of σADC provide quantitative visualisation of the con
fidence radiologists should have in ADC estimates within any 
body-region, which could improve interpretation of imaging changes 
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after anti-cancer treatments. Additionally, by mathematically 
combining σADC and ADC maps it is possible to produce a novel contrast 
mechanism (niceDWI) that improves disease visualisation and stand
ardisation of imaging signal between patients. 

Unfortunately, a pitfall of this approach is that in the clinical setting 
individual excitations (NEX = 1) are discarded by the scanner and only 
the average image is retained at each b-value to reduce data storage 
overheads. Although calculation of σADC is technically possible using 
only these averaged images, it is greatly corrupted by imaging noise 
when compared to estimates derived from the approach where each 
acquisition is retained [17]. Moreover, estimation of σADC using aver
aged images becomes impossible in cases where only two b-values are 
acquired, which is common in many clinical WB-DWI protocols. 

In this paper, we overcome these limitations by:  

1. Training a neural network to perform robust estimation of σADC at 
every voxel location directly from averaged images (NEX≥9) using 
estimates of σADC derived form individual acquisitions (NEX = 1) as 
the target distribution (ground-truth).  

2. Demonstrating that the trained network is also able to compute σADC 
when only 2 averaged b-value images are available, thus allowing 
the use of the technique on virtually any clinical scanner without 
changes to the clinical acquisition protocol. 

We experiment with various well-established deep neural networks 
based on the U-Net [18] and ResNet [19] architectures using two 
different loss functions, mean-absolute error (MAE) and feature-wise 
(perceptual) loss based on a pretrained deep-learning classification 
network (VGG16) [20]. We have also implemented a novel “b-value 
regularised” network architecture, which implements a b-value predic
tion loss function to improve the performance of the network. The final 
network was evaluated on two separate patient cohorts, the first with 
metastatic prostate cancer who underwent WB-DWI for surveillance of 
disease progression, and a second cohort of patients with malignant 
pleural mesothelioma (MPM) who underwent whole-lung MRI. We 
further evaluated whether the algorithm trained using the first patient 
cohort could be used for successful inference of σADC in the second pa
tient cohort and evaluated how many patients were required to fine-tune 
inference using a transfer-learning paradigm. Such experiments are vital 
to better understand the requirements of clinical adoption of 
deep-learning algorithms on different site of disease of at different im
aging centers. 

2. Materials and Methods 

2.1. Patient population and imaging protocol 

This retrospective study consists of two patient populations: (i) the 
prostate cancer cohort consisting of 16 patients with metastatic 
prostate cancer and suspected disease in the skeleton, and (ii) the me
sothelioma cohort consisting of 28 patients with mesothelioma. Both 
imaging studies were approved by the institutional review board, and 
the requirement for patient consent in the first study was waived as there 
was no alteration to the patient clinical pathway and data was fully 
anonymized before use, whilst in study (ii) patient consent was ob
tained. In both cases, axial diffusion-weighted imaging (DWI) was per
formed using 3 b-values across each cohort over 4–5 (prostate) and 1–2 
(mesothelioma) sequential imaging stations on a 1.5T scanner (Aera or 
Avanto, Siemens Healthineers, Germany). Within each cohort, the same 
protocol was used to ensure consistency of results (see Table 1 for full 
protocol parameters). In both cohorts, for each b-value a 3-directional 
orthogonal diffusion encoding scheme was applied using bipolar gra
dients to mitigate the effects of eddy-current induced distortions. Only a 
single average was acquired per direction, and this was repeated 3 and 4 
times for the prostate cancer and mesothelioma cohort respectively. This 
led to a total of 9 and 12 acquisitions per b-value and per slice for the 
prostate cancer and mesothelioma cohorts. For the prostate cancer 
cohort, patients were randomly split into training/validation/test 
groups according to 10/3/3; for the mesothelioma cohort, this random 
split was 20/4/4 [13]. 

2.2. Data processing 

An illustration of the statistical σADC data-fitting approach, the results 
of which were used here as the gold-standard, is presented in Fig. 1(a): 
ADC maps were calculated assuming a monoexponential decay model 
[2] as the negative gradient from a linear-least-squares (LLS) approxi
mation of the log-transformed averaged image signals (NEX = 9 for the 
prostate cancer cohort and NEX = 12 for the mesothelioma cohort). The 
y-axis intercept was also estimated, ln(S0), which represents the 
log-signal expected at b = 0 s/mm 2 (no diffusion weighting). From the 
individually retained acquisitions at each b-value (NEX = 1), maps of 
σADC were calculated using an iterative weighted linear least-squares 
(IWLS) approach [17]; these σADC maps acted as ground truth for our 
purposes. To make our model robust to different combinations of 
b-values, this analysis was repeated for each combination available in 
this dataset: 50/600/900, 50/900, 50/600, and 600/900 s/mm 2. It is 
clear from Fig. 1(a) that σADC is generally much higher when computed 
using b = 600/900 s/mm2 due to the inherently low image SNR at these 
b-values; this is also evident in the apparently noisier estimated ADC 
map and ln(S0) image. 

We then developed, trained and tested a deep-learning architecture 
(Fig. 1(b)) to generate maps of σADC using as input only the ADC and 
ln(S0) maps estimated using the averaged data at each b-value (NEX =
9/12). A total of 6400 training, 2080 validation and 2240 testing images 
were obtained for the prostate cancer cohort and 4320 training, 960 
validation and 960 testing images for the mesothelioma cohort. 

2.3. Deep learning 

2.3.1. Selecting the deep learning architecture 
We experimented with various network architectures to predict the 

σADC maps. Firstly, we trained a neural networks based on the U-Net 
architecture [18] with the number of filters used in each block being the 
same as suggested in the original paper [64, 128, 256, 512, 1024, 512, 
256, 128, 64], named U-Netheavy (31 million parameters), and then we 
trained a version with fewer parameters [16, 32, 64, 128, 256, 128, 64, 
32, 16], named U-Netlight (1.94 million parameters). Subsequently, we 
implemented residual blocks [19] for the encoder and decoder sections 

Table 1 
Diffusion-weighted imaging protocol parameters for both study cohorts.  

Parameter Prostate Cancer 
Cohort 

Mesothelioma Cohort 

Scanner 1.5T Siemens Aera 1.5T Siemens Avanto 
b-values (s/mm2) 50, 600, 900 100, 500, 800 
Gradient Directions 

(normalised) 
(-1,0,0), (0,1,0), 
(0,0,1) 

(-1,0,0), (0,1,0), 
(0,0,1) 

Number of Signal Averages 
(NSA)* 

3 × 1 4 × 1 

Echo Time (ms) 79 92 
Repetition Time (s) 12.7 6.0 
Acquisition matrix (cols x 

rows) 
128 × 104 [256 ×
208]a 

128 × 92 

Resolution (mm2) 1.68 × 1.68b 3 × 3 
Slices per station 40 (4–5 stations) 30 (2 stations) 
Slice Thickness (mm) 5 5 
Readout Bandwidth (Hz/voxel) 1955 1860 
Parallel Imaging GRAPPA (R = 2) GRAPPA (R = 2)  

a Values in square parentheses represent the image dimensions following 
interpolation by the scanner. 

b The resolution is presented following image interpolation by the scanner. 
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of the network with the same two combinations of filter numbers as for 
the U-Net networks; these were similarly named Res-U-Netheavy (31.2 
million parameters) and Res-U-Netlight (1.95 million parameters). 

For all networks, a linear activation was used for the last layer and a 
rectified linear unit (ReLU) activation function in all preceding layers. 
The weights incident to each hidden unit was constrained to a norm 
value less than or equal to 3 and random weight initialization with He 
normal initialization for all weights/biases [21]; 2 layers also used 50% 
dropout during training (Fig. 1(b)) to reduce overfitting [22]. The net
works were trained with a batch size of 25 DWI slices for 100 epochs and 
optimized using the Adam algorithm [23] with a learning rate of 10− 3 

for the light versions and 10− 4 for the heavy versions. All images were 
standardised to the mean and standard deviation of the training WBDWI 
set. The networks were trained using a Tesla P100-PCIE-16GB GPU-card 
and the trained algorithm was applied using a MacBook Pro laptop (2.9 
GHz Intel-Core-i7-CPU, 16 GB-2133-MHz-LPDDR3-RAM). 

2.3.2. Selecting the loss function 
We have developed a unique loss function to improve the appearance 

and quantitative accuracy of derived σADC maps. Firstly, the mean- 
absolute-error (mae) is used as a cost function such that the network 
minimises the voxel -wise absolute difference between the target (gold- 
standard) image and the network-derived estimate, σ†

ADC: 

Lmae =
1

NcNr

∑Nc

i=1

∑Nr

j=1

⃒
⃒
⃒σADC,i,j − σ†

ADC,i,j

⃒
⃒
⃒

for each voxel location i, j. 
To improve the visual similarity of generated maps to ground-truth, 

we also incorporated a perceptual loss using features derived from a pre- 
trained classification network (VGG16) with weights previously opti
mized using the ImageNet database [20]. Features from the first block of 
the first VGG16 layer were extracted from both the true σADC maps and 

Fig. 1. (a): An illustration of our data processing pipeline. From the nine single acquisition data (NEX = 1, black scatter points) we derive the clinical standard as the 
average at each b-value (NEX = 9, green scatter points). From the log-transformed averaged data, we obtain estimates of (i) the ADC from the negative gradient of the 
linear fit, and (ii) the log-transformed S0 image from the y-axis intercept (red scatter point). σADC is calculated using the NEX = 1 data, as its estimation is difficult 
given only 3 data-points, and impossible if only 2 are provided. It is clear that 2-point estimation of ADC using b = 600 and 900 s/mm2 results in noisy ADC maps, a 
fact that is supported by a general increase in σADC for these data. (b): Our deep-learning U-Net attempts to reconstruct σADC measurements from only input ADC maps 
and lS0 images, making 2-point estimation of σADC a possibility. 
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the corresponding deep-learned estimates σ†

ADC, and the 
mean-squared-error (MSE) between both feature vectors was subse
quently minimised in back-propagation: 

Lperc =
1

Nf

∑Nf

k=1

[
f (σADC)k − f

(
σ†

ADC
)

k

]2  

f : RNrNc →RNf represents the operation of extracting Nf features from 
σADC maps using the VGG16 network. The first VGG16 layer was selected 
to capture high-order features within σADC maps. 

Lastly, we implemented a regularisation parameter. It has been 
previously shown [17] that the estimated magnitude of ADC uncertainty 
is mathematically linked to the b-values from which it is derived ac
cording to the equation 

σ̂ADC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(B⊤WB)− 1
√

⋅σν  

with b-value design matrix B =

(
b1 b2 … bN
1 1 … 1

)⊤

for N not neces

sarily unique b-values, σν representing the standard deviation (noise) of 
log-transformed data at each b-value (which as an approximation we 
assume to be constant), and W representing a N × N square diagonal 
matrix with diagonal components equal to the desired weight for each b- 
value when performing ADC fitting. For the purposes of this research, we 
assume equal weighting for all b-values such that Wij = 1 if i = j and 
0 otherwise, and subsequently derive 

σ̂ADC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N

N
∑

l
b2

l −
(∑

l
bl

)2

√
√
√
√
√

⋅σν

= ω⋅σν  

ω : RN→R1 encodes the combination of known b-values. We predict 
from this that estimation of ω from accurate maps of σADC should be 
possible and thus used to help regularise the full σ†

ADC estimation 
network during training. 

We developed a b-value regression network to estimate ω from 
ground truth σADC maps (illustrated in Fig. 1(b)). The network consists of 
four VGG-like blocks with 32, 64, 128, and 256 filters respectively (3 × 3 
filter size in each case), with each block followed by a max-pooling 
operation and a 20% dropout layer to reduce overfitting. The final, 
fully-connected layer consists of 256 neurons (dropout 20%) followed 
by another dense layer consisting of a single neuron to generate the 
estimate of ω. A linear activation was used for this last layer whilst a 
ReLU activation function was used in all preceding layers. The He 
technique [21] was used to initialize all layers prior to training, and the 
network was trained using a batch size of 30 for 70 epochs; a MSE loss 
function and the Adam algorithm with a learning rate of 0.001 for 
optimisation were employed. 

The trained b-value regression network was used to improve the loss 
function of our σADC estimation network: during training the network 
was used to estimate ω, but this time from the estimated σ†

ADC maps. This 
loss may be characterised as 

Lω =
[
g
(
σ†

ADC
)
− ω

]2 

Table 2 
Comparison of image similarities on the test patients of the prostate cancer cohort to select the network architecture. The mean-absolute-error (Mae), structural 
similarity index (SSIM) and peak-signal-to-noise ratio (PSNR) were calculated for all four b-value combinations: (50, 600, 900), (50, 900), (50, 600) and (600, 900). On 
the top part the results about the base architecture using a Lmae cost function are presented, on the middle part the effects of the different cost functions are shown while 
keeping a simple base architecture steady and on the bottom the outcome of our proposed architecture. Note that the bold values indicate the best performance 
achieved for each metric.  

Network (50, 600, 900) (50, 900) (50, 600) (600, 900) 

Mae (10− 6 

mm2/s) 
SSIM 
(10− 2) 

PSNR Mae (10− 6 

mm2/s) 
SSIM 
(10− 2) 

PSNR Mae (10− 6 

mm2/s) 
SSIM 
(10− 2) 

PSNR Mae (10− 6 

mm2/s) 
SSIM 
(10− 2) 

PSNR 

U-Netheavy 

(Lmae) 
13.7 99.4 48.7 17.7 99.1 45.9 25.2 98.7 44.1 40.1 97.9 41.2 

U-Netlight (Lmae) 13.6 99.5 49 18.1 99.0 45.6 25.2 98.7 43.7 40.4 97.9 41.2 
Res-U-Netheavy 

(Lmae) 
13.1 99.5 49.4 17.6 99.1 46 24.7 98.8 44.2 39.9 97.9 41.2 

Res-U-Netlight 

(Lmae) 
12.8 99.6 49.9 17.3 99.2 46.3 24.5 98.9 44.3 39.7 98.0 41.3  

U-Netlight (Lmae) 13.6 99.5 49 18.1 99.0 45.6 25.2 98.7 43.7 40.4 97.9 41.2 
U-Netlight 

(Lmae+ Lperc) 
12.6 99.6 49.9 17 99.2 46.5 24.2 98.9 44.4 39.4 98.0 41.4 

U-Netlight 

(Lmae+ Lω) 
12.6 99.6 49.7 17.4 99.2 46.2 24.2 98.9 44.4 39.6 98.0 41.3 

U-Netlight (Ltotal) 12.5 99.6 49.9 16.9 99.3 46.6 23.8 98.9 44.6 39.3 98.0 41.4  

Res-U-Netlight 

(Ltotal) 
12.3 99.6 50.2 16.7 99.3 46.7 23.6 98.9 44.7 39.1 98.0 41.5  

Fig. 2. Training (solid) and validation (dashed) curves depicting the change in 
mean-absolute-error over the training epochs that we investigated. It is clear 
that a plateau in the validation curve is observed after epoch 50. 
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with g : RNrNc →R1 representing the operation of the trained b-value 
regression network, such that g(σ†

ADC) = ω† is the value estimated from 
the σADC map generated by the deep-learning algorithm during training. 

Our final cost function for estimating σ†
ADC was therefore 

Ltotal = 1.0⋅Lmae + 0.7⋅Lperc + 0.4⋅Lω  

where the weighting for each individual loss was found empirically after 
experimentation with different values. We also compared the simple U- 
Netlight network trained using the following loss functions: (i) Lmae, (ii) 
1.0⋅Lmae + 0.7⋅Lperc and (iii) 1.0⋅Lmae + 0.4⋅Lω. The weighting were kept 
consistent for all experiments. 

2.4. Quantitative comparison of image similarity and regions of active 
disease 

To compare the accuracy of deep-learning estimates of σADC (denoted 
henceforth as σ†

ADC) with the gold-standard, a radiologist delineated 
regions of metastatic bone disease on the prostate cancer cohort, using 
an in-house developed semi-automated segmentation pipeline [11]. In 
addition to this, a physicist with more than 10 years’ experience in body 
DWI semi-automatically delineated regions of disease in the mesothe
lioma cohort using the tools available within 3D Slicer; these regions 
were subsequently verified and (where needed) corrected by a consul
tant radiologist (>10 years’ experience in body DWI). Resultant regions 

Fig. 3. Example axial slices from each of the test patient datasets collected from the prostate cancer cohort. There is good agreement between gold standard σADC and 
the corresponding deep-learning estimated map, σ†

ADC, in all cases and for all b-value combinations. Surprisingly, the deep-learning approach was also able to 
reconstruct the characteristic ‘ringing’ artefact observed in the background of the σADC maps. In all images, windowing levels were kept identical. 
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of interest (ROIs) were transferred onto both the gold standard σADC 
maps, and onto those generated by the deep-learning algorithm. We 
compared the values within regions of bone disease by calculating the 
relative difference of means (RDM), the mean absolute voxel-wise dif
ference, the Pearson correlation (r) and the coefficient of variation 
(CoV). All metrics were calculated using scikit-learn v. 0.14.2. We also 
calculated the kernel density estimation of the values within bone dis
ease using a gaussian kernel with automatic bandwidth determination 
[24] to visually assess the similarity of the distributions. 

The similarity between the gold-standard σADC and the deep learning 

estimate σ†

ADC was also assessed by calculating the mean-absolute-error 
(mae), the structural-similarity index (SSIM) and the peak-signal-to- 
noise ratio (PSNR) for every b-value combination. 

2.5. Transfer learning 

For the four validation mesothelioma patients, we evaluated the 
MAE between the σADC and the σ†

ADC maps estimated using the Res-U- 
Netlight network with the Ltotal cost function trained using only the 
prostate cancer cohort dataset. We used those weights as starting point 
and subsequently retrained the network by gradually introducing 1 or 
more training datasets (in increments of one patient) from the meso
thelioma cohort. The network was retrained with the same set of pa
rameters and a smaller learning rate of 10− 5 for 100 epochs. The average 
mae was calculated between network-produced images and ground- 
truth images across all validation images and across all b-value 
combinations. 

3. Results 

3.1. Selecting the deep learning architecture and loss function 

Our experiments showed that U-Net-like architectures are in general 

Fig. 4. Kernel density distributions of ground-truth measurements of σADC and deep-learned values σ†
ADC within regions of metastatic prostate disease. Distributions 

are observed to display similar characteristics indicating that the deep-learned estimation is performing well. 

Table 3 
Statistics between the gold-standard and neural network predicted values within 
regions of active disease for the test patients of the prostate cancer cohort. Data 
are shown as the median values calculated across all three test patients.  

Parameter (50, 600, 
900) 

(50, 
900) 

(50, 
600) 

(600, 
900) 

Relative difference of means 
(%) 

5.06 3.15 6.13 2.87 

Correlation 0.81 0.76 0.78 0.85 
Mean absolute error (x10¡6 

mm2/s) 
13.3 18.6 22.1 43.9 

Coefficient of Variation 0.08 0.08 0.07 0.06  
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appropriate to solve this task. First, we compared the four different base 
network architectures using the Lmae cost function for all four b-value 
combinations on the test group of the prostate cancer cohort: Res-U- 
Netlight scored the lowest mean-absolute error and highest SSIM and 
PSNR for all b-value combinations and was therefore selected as our 
base architecture. Detailed results are presented in Table 2. 

Next, to select the cost function we used the simple U-Netlight archi
tecture and experimented with (i) Lmae, (ii) 1.0⋅Lmae + 0.7⋅Lperc , (iii) 1.0⋅ 
Lmae + 0.4⋅Lω and (iv) Ltotal. Ltotal scored the lowest MAE and highest 
SSIM and PSNR for all b-value combinations and was therefore selected 
as our cost function. Also, U-Netlight with any enhanced cost function 
(ii), (iii) and (iv) outperformed Res-U-Netlight with Lmae in all metrics. 

Finally, we applied the Res-U-Netlight architecture with the Ltotal cost 

function which scores the lowest MAE and highest SSIM and PSNR of all 
previous combinations and was therefore selected as our full network. 
Detailed results are presented in Table 2. Training and validation curves 
of the model for the prostate cancer cohort are presented in Fig. 2; clear 
stabilisation of the validation mae loss was observed after approximately 
50 epochs. 

Based on these results, we selected the Res-Unetlight architecture with 
Ltotal cost function as our final model and we performed our subsequent 
experiments on the mesothelioma cohort and the delineated regions of 
metastatic bone disease using only this model. 

Fig. 5. Example axial slices from each of the test patient datasets collected from the mesothelioma cancer cohort. There is good agreement between gold standard 
σADC and the corresponding deep-learning estimated map, σ†

ADC, in all cases and for all b-value combinations. In all images, windowing levels were kept identical. 
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3.2. Deep learning can provide estimates of ADC uncertainty 

Fig. 3 demonstrates exemplar slices from each of the three test pa
tient datasets in this cohort. It is clear that good visual agreement is 
observed between the gold-standard σADC and DL-estimated σ†

ADC maps. 
Importantly, this has been achieved for all four b-value combinations 
tested, results that are corroborated in our quantitative comparison 
(Fig. 4) where distributions of σADC and σ†

ADC values within disease 
exhibit similar characteristics. Statistics between predicted and gold- 
standard values within regions of active disease for the three test pa
tients of the cohort are shown in Table 3. 

For the mesothelioma cohort our expert radiologists observe the 

same level of visual agreement (exemplar slices from 3/4 test patients 
shown in Fig. 5, and histograms of estimates of σADC within disease 
shown in Fig. 6 for all four test patients). This demonstrates the ability of 
the network to produce good estimates of σADC in regions with smaller 
fields of view. Statistics for the image similarity and values within re
gions of active disease for the eight validation/test patients the cohort 
are shown in Table 4. 

3.3. Transfer learning enables retraining with fewer images for 
application in different clinical protocols 

The network trained on the prostate cancer cohort and applied on the 
validation/test patients of the mesothelioma cohort directly without 
retraining produced moderate results (mae = 35 × 10− 6 mm2/s). 
However, after training with only 1 patient the results improved sub
stantially (mae = 14.7 × 10− 6 mm2/s), reaching a good quality after 6 
patients (mae = 12.3 × 10− 6 mm2/s) and remained approximately 
stable after 10 patients (mae = 11.9 × 10− 6 mm2/s - fully-trained model 
mae = 11.4 × 10− 6 mm2/s). We observe that while the network con
tinues to improve by adding more data, it achieves image quality com
parable to that of the fully-trained model with data from only a small 
number of patients (Fig. 7). 

4. Discussion 

Estimation of ADC measurement reliability is an essential task if 
WBDWI is to be embraced as a cancer response imaging biomarker in the 
healthcare community. Whilst it may be possible to acquire specialist 
datasets that allow calculation of ADC uncertainty, σADC, at every 
anatomical location, the fact remains that most if not all clinical centers 
will not be able to acquire such data. This will likely be due to (i) an 
inherent delay by scanner manufacturers to implement such approaches 

Fig. 6. Kernel density distributions of ground-truth measurements of σADC and deep-learned values σ†

ADC within regions of mesothelioma disease. Distributions are 
observed to display similar characteristics indicating that the deep-learned estimation is performing well. 

Table 4 
Image and values within regions of active disease statistics for the validation and 
test patients of the mesothelioma cohort between the gold-standard and the 
neural network predicted maps. Data are shown as the median values calculated 
across all eight validation and test patients.  

Image Statistics 

Parameter (50, 600, 
900) 

(50, 
900) 

(50, 
600) 

(600, 
900) 

Mean absolute error (x10¡6 

mm2/s) 
11.4 15 23.4 28.1 

SSIM (10¡2) 99.7 99.5 99.2 99.0 
PSNR 50.8 47.8 44.9 44.3 
Disease Statistics 
Relative difference of means 

(%) 
3.06 4.54 3.48 3.76 

Correlation 0.78 0.73 0.78 0.74 
Mean absolute error (x10¡6 

mm2/s) 
27.8 34.6 51.2 70.2 

Coefficient of Variation 0.06 0.09 0.08 0.06  
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within the clinical pathway, (ii) reluctance of centers for implementing 
non standard-of-care sequences, (iii) the increased data storage costs 
required to allow accurate assessment of σADC and (iv) the lack of local 
expertise to process the images and provide results. Using conventional 
clinical sequences using 3-point measurements produces statistically 
imprecise σADC measurements, whilst 2-point measurements cannot be 
used. 

In this article we demonstrate preliminary evidence that the use of 
deep-learning with a U-Net-like architecture can break such classical 
assumptions and provide robust estimation of σADC for DWI datasets 
acquired with only 2 or 3 unique b-values. We hypothesise that this is 
because the deep-architecture is able to learn complex relationships 

between a given voxel and its neighbouring regions, in order to arrive at 
robust estimation of the local noise field. Traditional approaches to this 
task include spatial filtering and wavelet decomposition, but these 
techniques tend to perform poorly and can create artefactual edges in 
the resultant images. The Res-U-netlight network we have employed 
consists of many trainable parameters (∼ 1.95 million) that are able to 
learn whether voxel differences are due to genuine noise or due to an 
object feature. Of course, other similar deep learning architectures could 
potentially be employed in future experiments [25,26]. 

We also show evidence that fusing the neural network with infor
mation inspired by more ‘human’ concepts, such as the high-order fea
tures extracted from the top layer of a pre-trained in ImageNet VGG16 

Fig. 7. Our transfer learning approach used the weights of the network trained in the prostate cancer cohort as starting point and applied the network on the 
mesothelioma dataset first without retraining and subsequently by retraining the network in increments of 1 patient at a time (a): Example slice and histograms of the 
value distributions within regions of fluid pleural effusion (white arrow) and solid disease (black arrow). Note that without re-training the network predicts higher 
uncertainty within regions of pleural effusion (white arrow), which may be due to the fact that disease of this kind is not present in whole-body MRI of advanced 
prostate cancer. However by retraining the network, even with images from 1 patient, the accuracy of the prediction was markedly improved. (b): The average mean- 
absolute-error was calculated between network-produced images and ground-truth images across all validation images (4 patients) and across all b-value combi
nations. Note that there is dramatic reduction in mae after including just one training patient dataset in the transfer learning approach. 
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network and forcing the network to predict the b-value combination of 
the image, can have a significant impact in its performance. A similar 
concept was presented by Hagos et al. [27], where a neural network for 
cell segmentation increased its detection performance by being forced to 
also predict the correct number of cells in the image. Here, we show that 
despite the simple U-Netlight architecture being out-performed by 
Res-U-Netlight, it produced better results with the enhanced cost func
tions. The best network here being Res-U-Netlight with our unique cost 
function suggests a need to combine modern complex network archi
tectures with relevant but more abstract concepts to achieve the most 
accurate and visually similar results. These concepts and loss functions 
could be fused with virtually any neural network of this type of archi
tecture and potentially improve its performance. 

Future studies should include evaluation on larger patient datasets, 
preferably acquired on a variety of different scanner models. An 
important finding from our study is that the U-Net could accurately 
estimate σADC independently of the b-value combination that produced 
the estimated ADC maps and ln(S0) image used as input. It would be 
valuable to further assess how robust our algorithm is to other b-value 
combinations. Our preliminary evidence shows that transfer learning by 
using a set of trained network weights as a starting point, would easily 
allow the successful retraining of the network with only a few images, 
making it suitable for use in potentially any diffusion-weighted imaging 
clinical protocol. Furthermore, this approach could be used in other 
quantitative imaging applications (including native T1, T2 and T2* 
estimation), where knowledge of the voxel-wise uncertainties would be 
valuable. 

5. Conclusion 

Deep-learned estimation of ADC uncertainties could provide clini
cians with increased confidence when using WBDWI to monitor 
response of cancer to treatment. Moreover, our technique does not 
require modification of existing clinical protocols and could therefore be 
applied to existing datasets for retrospective evaluation of WBDWI. 
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