918 research outputs found
Stabilizing multiple topological fermions on a quantum computer
AbstractIn classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.</jats:p
Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop
This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously
Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production
The dwindling of global petroleum deposits and worsening environmental issues have triggered researchers to find an alternative energy such as biodiesel. Biodiesel can be produced via transesterification of vegetable oil or animal fat with alcohol in the presence of a catalyst. A heterogeneous catalyst at an economical price has been studied widely for biodiesel production. It was noted that various types of natural waste shell are a potential calcium resource for generation of bio-based CaO, with comparable chemical characteristics, that greatly enhance the transesterification activity. However, CaO catalyzed transesterification is limited in its stability and studies have shown deterioration of catalytic reactivity when the catalyst is reused for several cycles. For this reason, different approaches are reviewed in the present study, which focuses on modification of waste-shell derived CaO based catalyst with the aim of better transesterification reactivity and high reusability of the catalyst for biodiesel production. The catalyst stability and leaching profile of the modified waste shell derived CaO is discussed. In addition, a critical discussion of the structure, composition of the waste shell, mechanism of CaO catalyzed reaction, recent progress in biodiesel reactor systems and challenges in the industrial sector are also included in this review
Nonmonotone Barzilai-Borwein Gradient Algorithm for -Regularized Nonsmooth Minimization in Compressive Sensing
This paper is devoted to minimizing the sum of a smooth function and a
nonsmooth -regularized term. This problem as a special cases includes
the -regularized convex minimization problem in signal processing,
compressive sensing, machine learning, data mining, etc. However, the
non-differentiability of the -norm causes more challenging especially
in large problems encountered in many practical applications. This paper
proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each
iteration, the generated search direction enjoys descent property and can be
easily derived by minimizing a local approximal quadratic model and
simultaneously taking the favorable structure of the -norm. Moreover, a
nonmonotone line search technique is incorporated to find a suitable stepsize
along this direction. The algorithm is easily performed, where the values of
the objective function and the gradient of the smooth term are required at
per-iteration. Under some conditions, the proposed algorithm is shown to be
globally convergent. The limited experiments by using some nonconvex
unconstrained problems from CUTEr library with additive -regularization
illustrate that the proposed algorithm performs quite well. Extensive
experiments for -regularized least squares problems in compressive
sensing verify that our algorithm compares favorably with several
state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page
Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality
High-grade glioma (HGG) is highly angiogenic, but antiangiogenic therapy has transient clinical benefit in only a fraction of patients. Vascular regulators of these heterogeneous responses remain undetermined. We found up-regulation of Sox7 and down-regulation of Sox17 in tumor endothelial cells (tECs) in mouse HGG.Sox7deletion suppressed VEGFR2 expression, vascular abnormality, hypoxia-driven invasion, regulatory T cell infiltration, and tumor growth. Conversely,Sox17deletion exacerbated these phenotypes by up-regulating Sox7 in tECs. Anti-VEGFR2 antibody treatment delayed tumor growth by normalizingSox17-deficient abnormal vessels with high Sox7 levels but promoted it by regressingSox7-deficient vessels, recapitulating variable therapeutic responses to antiangiogenic therapy in HGG patients. Our findings establish that Sox7 promotes tumor growth via vessel abnormalization, and its level determines the therapeutic outcome of VEGFR2 inhibition in HGG. In 189 HGG patients, Sox7 expression was heterogeneous in tumor vessels, and high Sox7 levels correlated with poor survival, early recurrence, and impaired vascular function, emphasizing the clinical relevance of Sox7 in HGG
Differential CARM1 expression in prostate and colorectal cancers
<p>Abstract</p> <p>Background</p> <p>Coactivator-associated arginine methyltransferase 1 (CARM1) functions as a transcriptional coactivator of androgen receptor (AR)-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa) and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors.</p> <p>Methods</p> <p>Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA) promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1.</p> <p>Results</p> <p>The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65) but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-κB target gene transcription.</p> <p>Conclusions</p> <p>The results of this study suggest that, in addition to its role in activation of steroid receptors, CARM1 functions as a transcriptional modulator by altering the activity of many transcriptional factors, especially with regard to androgen independent PCa and colorectal cancers.</p
Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target
YesN-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.University of Malaya High Impact Research (HIR) Grant (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, no. H-50001-A000027) given to K.G.C. and National Natural Science Foundation of China (no. 81260481) given to H.W
Structural and Functional Analysis of Phytotoxin Toxoflavin-Degrading Enzyme
Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE) was identified from Paenibacillus polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes, despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Å in length, and contains a Mn(II) ion interacting with one histidine residue, two glutamate residues, and three water molecules in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II)-coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the degradation of toxoflavin in a manner dependent on oxygen, Mn(II), and the reducing agent dithiothreitol. These results provide the structural features of TxDE and the early events in catalysis
Selective Down-Regulation of Nuclear Poly(ADP-Ribose) Glycohydrolase
The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose) polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose) glycohydrolase (PARG) degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO) targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway
- …