624 research outputs found
The Volcker Rule, Banking Entities, and Covered Funds Activities
With the passage of the 2010 Dodd-Frank Act, Congress instituted a host of new laws attempting to protect consumers from the types of risky trading that led to the 2008 economic crisis. However, many of the new rules and regulations, including the Volcker Rule, are yet to fully take effect. Among other restrictions, the Volcker Rule attempts to curtail risky trading by limiting banking entity investments in private equity and venture capital funds. As the Volcker Rule nears its implementation deadline, banking entities are concerned that they will face substantial losses in having to comply with the Volcker Rule by being forced to sell their investments at fire-sale prices
Office-Based Deep Sedation for Pediatric Ophthalmologic Procedures Using a Sedation Service Model
Aims. (1) To assess the efficacy and safety of pediatric office-based sedation for ophthalmologic procedures using a pediatric sedation service model. (2) To assess the reduction in hospital charges of this model of care delivery compared to the operating room (OR) setting for similar procedures. Background. Sedation is used to facilitate pediatric procedures and to immobilize patients for imaging and examination. We believe that the pediatric sedation service model can be used to facilitate office-based deep sedation for brief ophthalmologic procedures and examinations. Methods. After IRB approval, all children who underwent office-based ophthalmologic procedures at our institution between January 1, 2000 and July 31, 2008 were identified using the sedation service database and the electronic health record. A comparison of hospital charges between similar procedures in the operating room was performed. Results. A total of 855 procedures were reviewed. Procedure completion rate was 100% (C.I. 99.62–100). There were no serious complications or unanticipated admissions. Our analysis showed a significant reduction in hospital charges (average of $1287 per patient) as a result of absent OR and recovery unit charges. Conclusions. Pediatric ophthalmologic minor procedures can be performed using a sedation service model with significant reductions in hospital charges
The yersiniabactin-associated ATP binding cassette proteins YbtP and YbtQ enhance Escherichia coli fitness during high-titer cystitis
The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis. In this study, we compared the impact of ybtPQ on a model E. coli cystitis strain during in vitro culture and experimental murine infections. A ybtPQ-null mutant exhibited no growth defect under standard culture conditions, consistent with nonessentiality in this background. A growth defect phenotype was observed and genetically complemented in vitro during iron(III)-yersiniabactin-dependent growth. Following inoculation into the bladders of C3H/HEN and C3H/HeOuJ mice, this strain exhibited a profound, 10(6)-fold competitive infection defect in the subgroup of mice that progressed to high-titer bladder infections. These results identify a virulence role for YbtPQ in the highly inflammatory microenvironment characteristic of high-titer cystitis. The profound competitive defect may relate to the apparent selection of Yersinia HPI-positive E. coli in uncomplicated clinical UTIs
Antiviral immunity and T-regulatory cell function are retained after selective alloreactive T-cell depletion in both the HLA-identical and HLA-mismatched settings
AbstractNonselective T-cell depletion reduces the incidence of severe graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, but the cost is delayed and disordered antigen-specific immune reconstitution and increased infection. We use a method of selective depletion of alloreactive T cells expressing the activation marker CD69 after coculture with stimulator cells in a modified or standard mixed lymphocyte reaction. The technique has been shown to reduce alloreactivity while retaining third-party responses in vitro and, in a mismatched murine model, led to donor T-cell engraftment with a virtual absence of graft-versus-host disease and increased survival. We show in a human HLA-mismatched and unrelated HLA-identical setting that this technique retains >80% of specific cellular antiviral activity by cytomegalovirus-tetramer analysis and cytomegalovirus/Epstein-Barr virus peptide-stimulated interferon-γ ELISpot assay. Furthermore, CD4+ CD25+ T-regulatory cells are not removed by this method of selective allodepletion and retain their function in suppressing allogeneic proliferative responses. Preservation of antiviral cytotoxic T lymphocytes in selectively allodepleted stem cell grafts would lead to improved antiviral immunity after transplantation. The retention of immunosuppressive CD4+ CD25+ T-regulatory cells could lead to more ordered immune reconstitution and further suppress alloreactive responses after transplantation
Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund's adjuvant
Incomplete Freund's adjuvant (IFA) serves as a carrier for water-in-oil emulsion (W/O) vaccines. The stability of such emulsions greatly affects vaccine safety and efficacy since continued presence of antigen depots at lymphoid organs releasing low-level antigens is known to stimulate a potent immune response and high-level systemic release of antigens can lead to tolerance. W/O emulsions for the purpose of clinical and laboratory peptide-based vaccinations have been prepared using the techniques of syringe extrusion, vortex or high-speed homogenization. There is no consensus in the field over which technique would be best to use and no immunological data are available that compare the three techniques. In this study, we compared the immune responses induced by a peptide-based vaccine prepared using vortex, syringe-extrusion and homogenization. The vaccination led to tumor rejection by mice vaccinated with the peptide-based vaccine prepared using all three techniques. The immunological data from the in vivo cytotoxicity assay showed a trend for lower responses and a higher variability and greater range in the immune responses induced by a vaccine that was emulsified by the vortex or homogenizer techniques as compared to the syringe-extrusion technique. There were statistically significant lower numbers of IFNγ-secreting cells induced when the mice were vaccinated with a peptide-based vaccine emulsion prepared using the vortex compared to the syringe-extrusion technique. At a suboptimal vaccine dose, the mice vaccinated with a peptide-based vaccine emulsion prepared using the vortex technique had the largest tumors compared to the syringe-extrusion or the homogenizer technique. In the setting of a busy pharmacy that prepares peptide-based vaccine emulsions for clinical studies, the vortex technique can still be used but we urge investigators to take special care in their choice of mixing vessels for the vortex technique as that can influence the stability of the emulsion. However, in instances where the optimal dose is unknown, we caution investigators against using the vortex technique to prepare the peptide-based vaccine emulsions. Overall, we report that all three techniques can be used to prepare peptide-based vaccine emulsions under optimal dose conditions and we discuss important details regarding the proper preparation of the emulsions
Experience Designers and Their Roles as Researchers and Practitioners in the Academic and Commercial Fields
The employment of hacker/maker and design-based research practices in the academic research setting has afforded the design practitioner a means to participate in cutting-edge research, especially if the research outcome is product or service-oriented. Design research methodologies are sought out, but the acceptance of design-based research findings by the HCI community has only just come to maturity. Conferences such as ACM DIS1 attest to this, as well as design tracks in various conferences such as ACM CHI2 show that design research techniques and methodologies are making headways in the field. Still some believe that expectations from design research techniques should be curbed, yet also embraced for the novelty in approach it brings to problem-solving and interactivity development [1].
[1] W. Gaver, What should we expect from research through design?, in: Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI ’12, ACM, New York, NY, USA, 2012, pp. 937–946
Increased Th2 activity and diminished skin barrier function cooperate in allergic skin inflammation
Atopic dermatitis (AD) is a chronic inflammatory skin disease induced by a complex interaction between susceptibility genes encoding skin barrier components and environmental allergen exposure that results in type 2 cytokine production. Although genetic lesions in either component can be risk factors for disease in patients, whether these pathways interact in the development of AD is not clear. To test this, we mated mice with T-cell specific expression of constitutively active Stat6 (Stat6VT) that spontaneously develop allergic skin inflammation with Flaky tail (Ft) mice that have mutations in Flg and Tmem79 genes that each affect skin barrier function. Our results demonstrate that over 90% of the Stat6VT transgenic mice carrying the Ft alleles (Stat6VTxFt−/−) develop severe atopic dermatitis lesions by 3-5 months of age, compared with only 40% of Stat6VT mice that develop disease by 6-7 months of age. Further, histopathological analysis of skin tissues from Stat6VTxFt−/− mice revealed extensive thickening of the dermis with increased inflammatory infiltrates as compared with Stat6VT mice. Our study suggests that skin barrier defects and altered Th2 responses independently cooperate in the pathogenesis of allergic skin inflammation, similar to effects observed in patients with AD
Employing local cellulose fibre to reinforce the wearing course of asphalt pavement
The current state of road technology is incapable of alleviating the exponentially increasing traffic volume, that resulting in premature fatigue, cracks, accelerated ageing, permanent deformation, hydroplaning, as well as skidding. As a matter of fact, the wearing course on asphalt pavement is implied to use cellulose fibre as reinforcement. Cellulose fibre is derived from natural oil palm waste. This invention comprises formulation to maximise stability by using gap graded gradation and matrix of locally available sandstone aggregate. This study evaluates the optimum binder content of the mixture. Several asphalt specimens were produced by using 60/70 grade bitumen at bitumen content ranging from 5% to 7% with an increment of 0.5% by aggregate weight and with fibre at 0%, and 0.4% of aggregate weight added by dry process. Parameters evaluated were Voids in Mix, Voids Mineral Aggregate, Voids Filled with Bitumen, Specific Gravity, Resilient Modulus and Binder Drain Down Test. From the results, it suggests that optimum bitumen content with fibre inclusion is 6.5% of aggregate weight were comparatively has superlative result complying the standard. It was discovered that there was a substantial shift in the characteristics of the asphalt, resulting an improved pavement strength
- …