4,664 research outputs found

    Plasma simulation using the massively parallel processor

    Get PDF
    Two dimensional electrostatic simulation codes using the particle-in-cell model are developed on the Massively Parallel Processor (MPP). The conventional plasma simulation procedure that computes electric fields at particle positions by means of a gridded system is found inefficient on the MPP. The MPP simulation code is thus based on the gridless system in which particles are assigned to processing elements and electric fields are computed directly via Discrete Fourier Transform. Currently, the gridless model on the MPP in two dimensions is about nine times slower that the gridded system on the CRAY X-MP without considering I/O time. However, the gridless system on the MPP can be improved by incorporating a faster I/O between the staging memory and Array Unit and a more efficient procedure for taking floating point sums over processing elements. The initial results suggest that the parallel processors have the potential for performing large scale plasma simulations

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the lnT- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, δ/10\delta /10, where δ\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, δ/10\delta/10.Comment: 25 pages, 12 figure

    Supersolid state in fermionic optical lattice systems

    Full text link
    We study ultracold fermionic atoms trapped in an optical lattice with harmonic confinement by combining the real-space dynamical mean-field theory with a two-site impurity solver. By calculating the local particle density and the pair potential in the systems with different clusters, we discuss the stability of a supersolid state, where an s-wave superfluid coexists with a density-wave state of checkerboard pattern. It is clarified that a confining potential plays an essential role in stabilizing the supersolid state. The phase diagrams are obtained for several effective particle densities.Comment: 7 pages, 5 figures, Phys. Rev. A in pres

    Orbital Localization and Delocalization Effects in the U 5f^2 Configuration: Impurity Problem

    Full text link
    Anderson models, based on quantum chemical studies of the molecule of U(C_8H_8)_2, are applied to investigate the problem of an U impurity in a metal. The special point here is that the U 5f-orbitals are divided into two subsets: an almost completely localized set and a considerably delocalized one. Due to the crystal field, both localized and delocalized U 5f-orbitals affect the low-energy physics. A numerical renormalization group study shows that every fixed point is characterized by a residual local spin and a phase shift. The latter changes between 0 and \pi/2, which indicates the competition between two different fixed points. Such a competition between the different local spins at the fixed points reflects itself in the impurity magnetic susceptibility at high temperatures. These different features cannot be obtained if the special characters of U 5f-orbitals are neglected.Comment: 4 pages, REVTeX, email to [email protected]

    Small Energy Scale for Mixed-Valent Uranium Materials

    Full text link
    We investigate a two-channel Anderson impurity model with a 5f15f^1 magnetic and a 5f25f^2 quadrupolar ground doublet, and a 5f25f^2 excited triplet. Using the numerical renormalization group method, we find a crossover to a non-Fermi liquid state below a temperature TT^* varying as the 5f25f^2 triplet-doublet splitting to the 7/2 power. To within numerical accuracy, the non-linear magnetic susceptibility and the 5f15f^1 contribution to the linear susceptibility are given by universal one-parameter scaling functions. These results may explain UBe13_{13} as mixed valent with a small crossover scale TT^*.Comment: 4 pages, 3 figures, REVTeX, to appear in Phys. Rev. Let

    Office paper recyclability: fibrous characteristics

    Get PDF
    Recyclability is the ability of a material to reacquire the same properties it had originally. The aim of this work was to verify the recyclability of three printing and writing papers, from the characteristics of their fibers after two recycles. Three ECF bleached kraft eucalyptus commercial bond papers from Argentina and Brazil were studied (A, B, C). The papers were repulped and refined using different levels and intensities of energy (1st recycle). Laboratory sheets were produced, and they were repulped and refined again (2nd recycle). The microscopic characteristics of repulped papers were obtained by automatic equipment based on image analysis. Differences found in the behavior of the different samples can be explained by fiber parameters. The fiber length was significantly different in the three papers (A > B > C) and globally decreased in the second recycle (about 6%). Sample A had the highest initial fiber length and length/width, but it largely decreased with refining conditions in the 1st recycle (length fall 12%, generating fines by cutting), whereas it fall 9% between the 1st and 2nd recycles, and nothing with refining conditions in the 2nd recycle. Sample B fall by 5% with refining conditions in the 1st recycle, and 9% between the 1st and the 2nd recycle, but suffered few alteration in the second recycle. Fiber length of sample C was unaffected by refining conditions and only decreased 9% between the 1st and 2nd recycles. In all cases, the generated fines increased lightly with refining in the first recycle, but were two-fold higher in the second recycle than in the first one. The fiber coarseness of the 3 samples was similar in the first recycle, but decreases significantly in the 2nd recycleFil: Benitez, Julieta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Koga, Mariza E. T.. Instituto de Pesquisas Tecnologicas de Sao Paulo; BrasilFil: Otero D'Almeida, Maria L.. Instituto de Pesquisas Tecnologicas de Sao Paulo; BrasilFil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Park, Song W.. Universidade de Sao Paulo; BrasilFil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    High Voltage CMOS Control Interface for Astronomy - Grade Charged Coupled Devices

    Full text link
    The Pan-STARRS telescope consists of an array of smaller mirrors viewed by a Gigapixel arrays of CCDs. These focal planes employ Orthogonal Transfer CCDs (OTCCDs) to allow on-chip image stabilization. Each OTCCD has advanced logic features that are controlled externally. A CMOS Interface Device for High Voltage has been developed to provide the appropiate voltage signal levels from a readout and control system designated STARGRASP. OTCCD chip output levels range from -3.3V to 16.7V, with two different output drive strenghts required depending on load capacitance (50pF and 1000pF), with 24mA of drive and a rise time on the order of 100ns. Additional testing ADC structures have been included in this chip to evaluate future functional additions for a next version of the chip.Comment: 13 pages, 17 gigure

    Office paper recyclability: first recycling

    Get PDF
    Paper recyclability implies in the paper capacity to be recycled maintaining its properties to the maximum. Four commercial papers from Argentina and Brazil were studied, including three eucalyptus kraft (A, B, C) and one sugar cane bagasse soda-AQ (D), all with different bleaching processes. Their physical and chemical properties and a first laboratory recycling were evaluated. A refining of the pulp with a PFI mill, applying two energy levels at two different intensities - measured by number of revolutions and load - was accomplished to reach the same °SR (between 30 and 40, approximately). The refining energy and the yield were registered in each case. The properties of laboratory handsheets, and the aging to 24, 48, 72 and 144 hours were evaluated. The statistical analysis of the results indicates that the properties of the initial eucalyptus papers were similar, whereas they were generally inferior in the case of the bagasse paper. The bagasse and eucalyptus papers presented similar initial whiteness, but the first one had a higher reversion than the others. Once repulped, the eucalyptus papers A, B and C required, respectively, 4, 7 and 10 times greater energy than D, to obtain the same °SR. In all cases, the required energy to achieve the same °SR is slightly greater with the smaller refining intensity. The physical properties of the handsheets from the first recycle of paper D were, in general, lower. Among eucalyptus papers, B showed a slightly higher resistance and C, a slightly lower one. The mechanical properties of pulp sheets A, and D to a lesser extension, were more affected by the refining intensity than the rest, indicating a higher sensitivity of the fibers. The whiteness of the sheets of pulp B is lower than the rest. Opacity and light scattering coefficient of the sheets of pulp C were much higher than those of the other pulps.Fil: Benitez, Julieta Beatriz. Universidad Nacional de Misiones; ArgentinaFil: Koga, Mariza E. T.. Instituto de Pesquisas Tecnológicas de São Paulo (ipt); BrasilFil: Otero D'Almeida, Maria L.. Instituto de Pesquisas Tecnológicas de São Paulo (ipt); BrasilFil: Felissia, Fernando Esteban. Universidad Nacional de Misiones; ArgentinaFil: Park, Song W.. Escola Politecnica, Universidad de Sao Paulo (usp); BrasilFil: Area, Maria Cristina. Universidad Nacional de Misiones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Anti-crossings of spin-split Landau levels in an InAs two-dimensional electron gas with spin-orbit coupling

    Full text link
    We report tilted-field transport measurements in the quantum-Hall regime in an InAs/In_0.75Ga_0.25As/In_0.75Al_0.25As quantum well. We observe anti-crossings of spin-split Landau levels, which suggest a mixing of spin states at Landau level coincidence. We propose that the level repulsion is due to the presence of spin-orbit and of band-non-parabolicity terms which are relevant in narrow-gap systems. Furthermore, electron-electron interaction is significant in our structure, as demonstrated by the large values of the interaction-induced enhancement of the electronic g-factor.Comment: 4 pages, 3 figure
    corecore