226 research outputs found

    DogOnt - Ontology Modeling for Intelligent Domotic Environments

    Get PDF
    Abstract. Home automation has recently gained a new momentum thanks to the ever-increasing commercial availability of domotic components. In this context, researchers are working to provide interoperation mechanisms and to add intelligence on top of them. For supporting intelligent behaviors, house modeling is an essential requirement to understand current and future house states and to possibly drive more complex actions. In this paper we propose a new house modeling ontology designed to fit real world domotic system capabilities and to support interoperation between currently available and future solutions. Taking advantage of technologies developed in the context of the Semantic Web, the DogOnt ontology supports device/network independent description of houses, including both “controllable ” and architectural elements. States and functionalities are automatically associated to the modeled elements through proper inheritance mechanisms and by means of properly defined SWRL auto-completion rules which ease the modeling process, while automatic device recognition is achieved through classification reasoning.

    Dilation of the Giant Vortex State in a Mesoscopic Superconducting Loop

    Full text link
    We have experimentally investigated the magnetisation of a mesoscopic aluminum loop at temperatures well below the superconducting transition temperature TcT_{c}. The flux quantisation of the superconducting loop was investigated with a μ\mu-Hall magnetometer in magnetic field intensities between ±100Gauss\pm 100 {Gauss}. The magnetic field intensity periodicity observed in the magnetization measurements is expected to take integer values of the superconducting flux quanta Φ0=h/2e\Phi_{0}=h/2e. A closer inspection of the periodicity, however, reveal a sub flux quantum shift. This fine structure we interpret as a consequence of a so called giant vortex state nucleating towards either the inner or the outer side of the loop. These findings are in agreement with recent theoretical reports.Comment: 12 pages, 5 figures. Accepted for publication in Phys. Rev.

    Airborne laser scanning reveals uniform responses of forest structure to moose (Alces alces) across the boreal forest biome

    Get PDF
    1. The moose Alces alces is the largest herbivore in the boreal forest biome, where it can have dramatic impacts on ecosystem structure and dynamics. Despite the importance of the boreal forest biome in global carbon cycling, the impacts of moose have only been studied in disparate regional exclosure experiments, leading to calls for common analyses across a biome-wide network of moose exclosures. 2. In this study, we use airborne laser scanning (ALS) to analyse forest canopy re-sponses to moose across 100 paired exclosure-control experimental plots dis-tributed across the boreal biome, including sites in the United States (Isle Royale), Canada (Quebec, Newfoundland), Norway, Sweden and Finland. 3. We test the hypotheses that canopy height, vertical complexity and above- ground biomass (AGB) are all reduced by moose and that the impacts vary with moose density, productivity, temperature and pulse disturbances such as logging and insect outbreaks. 4. We find a surprising convergence in forest canopy response to moose. Moose had negative impacts on canopy height, complexity and AGB as expected. The responses of canopy complexity and AGB were consistent across regions and did not vary along environmental gradients. The difference in canopy height be-tween exclosures and open plots was on average 6 cm per year since the start of exclosure treatment (±2.1 SD). This rate increased with temperature, but only when moose density was high. 5. The difference in AGB between moose exclosures and open plots was 0.306 Mg ha−1 year−1 (±0.079). In browsed plots, stand AGB was 32% of that in the exclosures, a difference of 2.09 Mg ha−1. The uniform response allows scaling of the estimate to a biome-wide impact of moose of the loss of 448 (±115) Tg per year, or 224 Tg of carbon. 6. Synthesis: Analysis of ALS data from distributed exclosure experiments identified a largely uniform response of forest canopies to moose across regions, facilitat-ing scaling of moose impacts across the whole biome. This is an important step towards incorporating the effect of the largest boreal herbivore on the carbon cycling of one of the world's largest terrestrial biomes.publishedVersio
    corecore