988 research outputs found

    Folding Branes

    Full text link
    We study classical dynamics of a probe Dp-brane moving in a background sourced by a stack of Dp-branes. In this context the physics is similar to that of the effective action for open-string tachyon condensation, but with a power-law runaway potential. We show that small inhomogeneous ripples of the probe brane embedding grow with time, leading to folding of the brane as it moves. We give a full nonlinear analytical treatment of inhomogeneous brane dynamics, suitable for the Dirac-Born-Infeld + Wess-Zumino theory with arbitrary runaway potential, in the case where the source branes are BPS. In the near-horizon geometry, the inhomogeneous brane motion has a dual description in terms of free streaming of massive relativistic test particles originating from the initial hypersurface of the probe brane. We discuss limitations of the effective action description around loci of self-crossing of the probe brane (caustics). We also discuss the effect of brane folding in application to the theory of cosmological fluctuations in string theory inflation.Comment: 15 pages, 2 figures, LaTe

    Plasma Line Measurements at Chatanika with High-Speed Correlator and Filter Bank

    Get PDF
    In the spring and fall of 1978 we made an extensive series of plasma line and correlative observations with the Chatanika incoherent scatter radar. To make these measurements, we greatly modified the radar receiving system. In addition to enlarging the plasma line filter bank the most significant change was the incorporation of a high-speed correlator provided by the French. This was the first use of a correlator in a monostatic radar to obtain the intensity spectra of naturally occurring plasma lines. In this paper we develop the signal-processing theory that we use to obtain the plasma line intensities from these measurements; we also show that these intensities compare well with those obtained from the filter bank. To show the richness of the phenomena and to explore the capabilities of the correlator, we examine a wide variety of spectra that have been enhanced by secondary electrons in the auroral E layer. From the other simultaneous measurements we are able to relate these spectra and their variations to the auroral situation. We also obtained the first measurements in the auroral region of photoelectron-excited plasma lines in the E and F layers. Perhaps most significant, in the plasma line spectra we detected a Doppler shift that we then used to determine the Birkeland current carried by ambient electrons. Although there is a large estimated uncertainty for this first determination, we obtained a downward Birkeland current of 10 μA/m² in the diffuse aurora in what is, most likely, the equatorward portion of the evening sector auroral oval

    On Metric Preheating

    Get PDF
    We consider the generation of super-horizon metric fluctuations during an epoch of preheating in the presence of a scalar field \chi quadratically coupled to the inflaton. We find that the requirement of efficient broad resonance is concomitant with a severe damping of super-horizon \delta\chi quantum fluctuations during inflation. Employing perturbation theory with backreaction included as spatial averages to second order in the scalar fields and in the metric, we argue that the usual inflationary prediction for metric perturbations on scales relevant for structure formation is not strongly modified.Comment: 5 latex pages, 1 postscript figure included, uses revtex.sty in two column format and epsf.sty, some typos corrected and references added. Links and further material at http://astro.uchicago.edu/home/web/sigl/r4.htm

    Chaos and Preheating

    Get PDF
    We show evidence for a relationship between chaos and parametric resonance both in a classical system and in the semiclassical process of particle creation. We apply our considerations in a toy model for preheating after inflation.Comment: 7 pages, 9 figures; uses epsfig and revtex v3.1. Matches version accepted for publication in Phys. Rev.

    Exact identification of the radion and its coupling to the observable sector

    Full text link
    Braneworld models in extra dimensions can be tested in laboratory by the coupling of the radion to the Standard Model fields. The identification of the radion as a canonically normalized field involves a careful General Relativity treatment: if a bulk scalar is responsible for the stabilization of the system, its fluctuations are entangled with the perturbations of the metric and they also have to be taken into account (similarly to the well-developed theory of scalar metric perturbations in 4D cosmology with a scalar field). Extracting a proper dynamical variable in a warped geometry/scalar setting is a nontrivial task, performed so far only in the limit of negligible backreaction of the scalar field on the background geometry. We perform the general calculation, diagonalizing the action up to second order in the perturbations and identifying the physical eigenmodes of the system for any amplitude of the bulk scalar. This computation allows us to derive a very simple expression for the exact coupling of the eigenmodes to the Standard Model fields on the brane, valid for an arbitrary background configuration. As an application, we discuss the Goldberger-Wise mechanism for the stabilization of the radion in the Randall-Sundrum type models. The existing studies, limited to small amplitude of the bulk scalar field, are characterized by a radion mass which is significantly below the physical scale at the observable brane. We extend them beyond the small backreaction regime. For intermediate amplitudes, the radion mass approaches the electroweak scale, while its coupling to the observable brane remains nearly constant. At very high amplitudes, the radion mass instead decreases, while the coupling sharply increases. Severe experimental constraints are expected in this regime.Comment: 20 pages, 6 figure

    Ion composition measurements and modelling at altitudes from 140 to 350 km using EISCAT measurements

    No full text
    International audienceThis work aims at processing the data of CP1 and CP2 programs of EISCAT ionospheric radar from 1987 to 1994 using the "full profile" method which allows to solve the "temperature-composition" ambiguity problem in the lower F region. The program of data analysis was developed in the CEPHAG in 1995–1996. To improve this program, we implemented another analytical function to model the ion composition profile. This new function better reflects the real profile of the composition. Secondly, we chose the best method to select the initial conditions for the "full profile" procedure. A statistical analysis of the results was made to obtain the averages of various parameters: electron concentration and temperature, ion temperature, composition and bulk velocity. The aim is to obtain models of the parameter behaviour defining the ion composition profiles : z50 (transition altitude between atomic and molecular ions) and dz (width of the profile), for various seasons and for high and low solar activities. These models are then compared to other models. To explain the principal features of parameters z50 and dz, we made an analysis of the processes leading to composition changes and related them to production and electron density profile. A new experimental model of ion composition is now available

    ISW effect in Unified Dark Matter Scalar Field Cosmologies: an analytical approach

    Get PDF
    We perform an analytical study of the Integrated Sachs-Wolfe (ISW) effect within the framework of Unified Dark Matter models based on a scalar field which aim at a unified description of dark energy and dark matter. Computing the temperature power spectrum of the Cosmic Microwave Background anisotropies we are able to isolate those contributions that can potentially lead to strong deviations from the usual ISW effect occurring in a Λ\LambdaCDM universe. This helps to highlight the crucial role played by the sound speed in the Unified Dark Matter models. Our treatment is completely general in that all the results depend only on the speed of sound of the dark component and thus it can be applied to a variety of unified models, including those which are not described by a scalar field but relies on a single dark fluid.Comment: 15 pages, LateX file; one comment after Eq.(36) and formula (44) added in order to underline procedure and main results. Accepted for publication in JCAP; some typos correcte
    • …
    corecore