29 research outputs found

    False positive acetaminophen concentrations in patients with liver injury

    Get PDF
    AbstractBackgroundAcetaminophen toxicity is the most common form of acute liver failure in the U.S. After acetaminophen overdoses, quantitation of plasma acetaminophen can aid in predicting severity of injury. However, recent case reports have suggested that acetaminophen concentrations may be falsely increased in the presence of hyperbilirubinemia.MethodsWe tested sera obtained from 43 patients with acute liver failure, mostly unrelated to acetaminophen, utilizing 6 different acetaminophen quantitation systems to determine the significance of this effect. In 36 of the 43 samples with bilirubin concentrations ranging from 1.0–61.5 mg/dl no acetaminophen was detectable by gas chromatography-mass spectroscopy. These 36 samples were then utilized to test the performance characteristics of 2 immunoassay and 4 enzymatic–colorimetric methods.ResultsThree of four colorimetric methods demonstrated ‘detectable’ values for acetaminophen in from 4 to 27 of the 36 negative samples, low concentration positive values being observed when serum bilirubin concentrations exceeded 10 mg/dl. By contrast, the 2 immunoassay methods (EMIT, FPIA) were virtually unaffected. The false positive values obtained were, in general, proportional to the quantity of bilirubin in the sample. However, prepared samples of normal human serum with added bilirubin showed a dose–response curve for only one of the 4 colorimetric assays.ConclusionsFalse positive acetaminophen tests may result when enzymatic–colorimetric assays are used, most commonly with bilirubin concentrations >10 mg/dl, leading to potential clinical errors in this setting. Bilirubin (or possibly other substances in acute liver failure sera) appears to affect the reliable measurement of acetaminophen, particularly with enzymatic–colorimetric assays

    Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients

    Get PDF
    Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective “early” and “late” colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations

    Pseudomonas

    No full text

    Respiratory virus-induced EGFR activation suppresses IRF1-dependent Interferon-λ and antiviral defense in airway epithelium

    No full text
    Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus– and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1–induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies

    Assessment of osteonecrosis in the presence of instrumentation for femoral neck fracture using contrast-enhanced mavric sequence

    Full text link
    BACKGROUND Evaluating postoperative femoral neck facture (FNF) with metal fixation hardware is commonly performed using radiographs. MRI has greater sensitivity and specificity to evaluate osteonecrosis (ON) but is often challenging due to the image distortion caused by metallic hardware. QUESTIONS/PURPOSES The aim of this study is to compare fast spin-echo (FSE) and multi-acquisition variable-resonance image combination (MAVRIC) sequences in assessing ON following metallic fixation of FNF and determining feasibility of semi-quantitative perfusion using MAVRIC. METHODS Radiography and MRI were performed at 3 and 12 months postoperatively, using FSE and pre- and post-gadolinium contrast MAVRIC sequences in 21 FNF patients. The presence and volume of ON were recorded. Signal intensity (SI) enhancement was measured on the MAVRIC sequences within the center and rim of ON; with the ilium and femoral diaphysis as controls. The detection rate of ON between MAVRIC and FSE images was evaluated as the difference of percent enhancement across the defined regions of interest. RESULTS ON was detected in 0% of radiographs, in 67% of FSE, and in 76% of MAVRIC images at 3 months follow-up, with similar results at 12 months. MAVRIC images had larger ON volume than FSE images at both time points. A significant percentage SI enhancement was only detected in the ON rim. CONCLUSION Radiographs could not detect ON following metallic fixation of FNF. MAVRIC is more sensitive than FSE for determining the volume of ON. SI measurements using MAVRIC may provide an indirect assessment of perfusion

    EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    No full text
    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies
    corecore