68 research outputs found

    Sticky Matter: Jamming and rigid cluster statistics with attractive particle interactions

    Full text link
    While the large majority of theoretical and numerical studies of the jamming transition consider athermal packings of purely repulsive spheres, real complex fluids and soft solids generically display attraction between particles. By studying the statistics of rigid clusters in simulations of soft particles with an attractive shell, we present evidence for two distinct jamming scenarios. Strongly attractive systems undergo a continuous transition in which rigid clusters grow and ultimately diverge in size at a critical packing fraction. Purely repulsive and weakly attractive systems jam via a first order transition, with no growing cluster size. We further show that the weakly attractive scenario is a finite size effect, so that for any nonzero attraction strength, a sufficiently large system will fall in the strongly attractive universality class. We therefore expect attractive jamming to be generic in the laboratory and in nature.Comment: 4 pages, 5 figure

    Clinical examination findings as predictors of acute kidney injury in critically ill patients

    Get PDF
    Background Acute Kidney Injury (AKI) in critically ill patients is associated with a markedly increased morbidity and mortality. The aim of this study was to establish the predictive value of clinical examination for AKI in critically ill patients. Methods This was a sub-study of the SICS-I, a prospective observational cohort study of critically ill patients acutely admitted to the Intensive Care Unit (ICU). Clinical examination was performed within 24 hours of ICU admission. The occurrence of AKI was determined at day two and three after admission according to the KDIGO definition including serum creatinine and urine output. Multivariable regression modeling was used to assess the value of clinical examination for predicting AKI, adjusted for age, comorbidities and the use of vasopressors. Results A total of 1003 of 1075 SICS-I patients (93%) were included in this sub-study. 414 of 1003 patients (41%) fulfilled the criteria for AKI. Increased heart rate (OR 1.12 per 10 beats per minute increase, 98.5% CI 1.04-1.22), subjectively cold extremities (OR 1.52, 98.5% CI 1.07-2.16) and a prolonged capillary refill time on the sternum (OR 1.89, 98.5% CI 1.01-3.55) were associated with AKI. This multivariable analysis yielded an area under the receiver-operating curve (AUROC) of 0.70 (98.5% CI 0.66-0.74). The model performed better when lactate was included (AUROC of 0.72, 95%CI 0.69-0.75), P = .04. Conclusion Clinical examination findings were able to predict AKI with moderate accuracy in a large cohort of critically ill patients. Findings of clinical examination on ICU admission may trigger further efforts to help predict developing AKI.Peer reviewe

    Burden of acute kidney injury and 90-day mortality in critically ill patients

    Get PDF
    Background Mortality rates associated with acute kidney injury (AKI) vary among critically ill patients. Outcomes are often not corrected for severity or duration of AKI. Our objective was to analyse whether a new variable, AKI burden, would outperform 1) presence of AKI, 2) highest AKI stage, or 3) AKI duration in predicting 90-day mortality. Methods Kidney Diseases: Improving Global Outcomes (KDIGO) criteria using creatinine, urine output and renal replacement therapy were used to diagnose AKI. AKI burden was defined as AKI stage multiplied with the number of days that each stage was present (maximum five), divided by the maximum possible score yielding a proportion. The AKI burden as a predictor of 90-day mortality was assessed in two independent cohorts (Finnish Acute Kidney Injury, FINNAKI and Simple Intensive Care Studies I, SICS-I) by comparing four multivariate logistic regression models that respectively incorporated either the presence of AKI, the highest AKI stage, the duration of AKI, or the AKI burden. Results In the FINNAKI cohort 1096 of 2809 patients (39%) had AKI and 90-day mortality of the cohort was 23%. Median AKI burden was 0.17 (IQR 0.07-0.50), 1.0 being the maximum. The model including AKI burden (area under the receiver operator curve (AUROC) 0.78, 0.76-0.80) outperformed the models using AKI presence (AUROC 0.77, 0.75-0.79, p = 0.026) or AKI severity (AUROC 0.77, 0.75-0.79, p = 0.012), but not AKI duration (AUROC 0.77, 0.75-0.79, p = 0.06). In the SICS-I, 603 of 1075 patients (56%) had AKI and 90-day mortality was 28%. Median AKI burden was 0.19 (IQR 0.08-0.46). The model using AKI burden performed better (AUROC 0.77, 0.74-0.80) than the models using AKI presence (AUROC 0.75, 0.71-0.78, p = 0.001), AKI severity (AUROC 0.76, 0.72-0.79. p = 0.008) or AKI duration (AUROC 0.76, 0.73-0.79, p = 0.009). Conclusion AKI burden, which appreciates both severity and duration of AKI, was superior to using only presence or the highest stage of AKI in predicting 90-day mortality. Using AKI burden or other more granular methods may be helpful in future epidemiological studies of AKI.Peer reviewe

    Burden of acute kidney injury and 90-day mortality in critically ill patients

    Get PDF
    Background Mortality rates associated with acute kidney injury (AKI) vary among critically ill patients. Outcomes are often not corrected for severity or duration of AKI. Our objective was to analyse whether a new variable, AKI burden, would outperform 1) presence of AKI, 2) highest AKI stage, or 3) AKI duration in predicting 90-day mortality. Methods Kidney Diseases: Improving Global Outcomes (KDIGO) criteria using creatinine, urine output and renal replacement therapy were used to diagnose AKI. AKI burden was defined as AKI stage multiplied with the number of days that each stage was present (maximum five), divided by the maximum possible score yielding a proportion. The AKI burden as a predictor of 90-day mortality was assessed in two independent cohorts (Finnish Acute Kidney Injury, FINNAKI and Simple Intensive Care Studies I, SICS-I) by comparing four multivariate logistic regression models that respectively incorporated either the presence of AKI, the highest AKI stage, the duration of AKI, or the AKI burden. Results In the FINNAKI cohort 1096 of 2809 patients (39%) had AKI and 90-day mortality of the cohort was 23%. Median AKI burden was 0.17 (IQR 0.07-0.50), 1.0 being the maximum. The model including AKI burden (area under the receiver operator curve (AUROC) 0.78, 0.76-0.80) outperformed the models using AKI presence (AUROC 0.77, 0.75-0.79, p = 0.026) or AKI severity (AUROC 0.77, 0.75-0.79, p = 0.012), but not AKI duration (AUROC 0.77, 0.75-0.79, p = 0.06). In the SICS-I, 603 of 1075 patients (56%) had AKI and 90-day mortality was 28%. Median AKI burden was 0.19 (IQR 0.08-0.46). The model using AKI burden performed better (AUROC 0.77, 0.74-0.80) than the models using AKI presence (AUROC 0.75, 0.71-0.78, p = 0.001), AKI severity (AUROC 0.76, 0.72-0.79. p = 0.008) or AKI duration (AUROC 0.76, 0.73-0.79, p = 0.009). Conclusion AKI burden, which appreciates both severity and duration of AKI, was superior to using only presence or the highest stage of AKI in predicting 90-day mortality. Using AKI burden or other more granular methods may be helpful in future epidemiological studies of AKI.Peer reviewe

    Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria

    Get PDF
    Background: Acute kidney injury (AKI) is a serious complication of critical illness with both attributed morbidity and mortality at short-term and long-term. The incidence of AKI reported in critically ill patients varies substantially with the population evaluated and the definitions used. We aimed to assess which of the AKI definitions (RIFLE, AKIN or KDIGO) with or without urine output criteria recognizes AKI most frequently and quickest. Additionally, we conducted a review on the comparison of incidence proportions of varying AKI definitions in populations of critically ill patients. Methods: We included all patients with index admissions to our intensive care unit (ICU) from January 1(st), 2014 until June 11th, 2014 to determine the incidence and onset of AKI by RIFLE, AKIN and KDIGO during the first 7 days of ICU admission. We conducted a sensitive search using PubMed evaluating the comparison of RIFLE, AKIN and KDIGO in critically ill patients Results: AKI incidence proportions were 15, 21 and 20% respectively using serum creatinine criteria of RIFLE, AKIN and KDIGO. Adding urine output criteria increased AKI incidence proportions to 35, 38 and 38% using RIFLE, AKIN and KDIGO definitions. Urine output criteria detected AKI in patients without AKI at ICU admission in a median of 13 h (IQR 7-22 h; using RIFLE definition) after admission compared to a median of 24 h using serum creatinine criteria (IQR24-48 h). In the literature a large heterogeneity exists in patients included, AKI definition used, reference or baseline serum creatinine used, and whether urine output in the staging of AKI is used. Conclusion: AKIN and KDIGO criteria detect more patients with AKI compared to RIFLE criteria. Addition of urine output criteria detect patients with AKI 11 h earlier than serum creatinine criteria and may double AKI incidences in critically ill patients. This could explain the large heterogeneity observed in literature

    Associations between tricuspid annular plane systolic excursion to reflect right ventricular function and acute kidney injury in critically ill patients : a SICS-I sub-study

    Get PDF
    Acute kidney injury (AKI) occurs in up to 50% of all critically ill patients and hemodynamic abnormalities are assumed to contribute, but their nature and share is still unclear. We explored the associations between hemodynamic variables, including cardiac index and right ventricular function, and the occurrence of AKI in critically ill patients. In this prospective cohort study, we included all patients acutely admitted to an intensive care unit (ICU). Within 24 h after ICU admission clinical and hemodynamic variables were registered including ultrasonographic measurements of cardiac index and right ventricular function, assessed using tricuspid annular plane systolic excursion (TAPSE) and right ventricular systolic excursion (RV S'). Maximum AKI stage was assessed according to the KDIGO criteria during the first 72 h after admission. Multivariable logistic regression modeling was used including both known predictors and univariable significant predictors of AKI. Secondary outcomes were days alive outside ICU and 90-day mortality. A total of 622 patients were included, of which 338 patients (54%) had at least AKI stage 1 within 72 h after ICU admission. In the final multivariate model higher age (OR 1.01, 95% CI 1.00-1.03, for each year), higher weight (OR 1.03 CI 1.02-1.04, for each kg), higher APACHE IV score (OR 1.02, CI 1.01-1.03, per point), lower mean arterial pressure (OR 1.02, CI 1.01-1.03, for each mmHg decrease) and lower TAPSE (OR 1.05, CI 1.02-1.09 per millimeter decrease) were all independent predictors for AKI in the final multivariate logistic regression model. Sepsis, cardiac index, RV S' and use of vasopressors were not significantly associated with AKI in our data. AKI patients had fewer days alive outside of ICU, and their mortality rate was significantly higher than those without AKI. In our cohort of acutely admitted ICU patients, the incidence of AKI was 54%. Hemodynamic variables were significantly different between patients with and without AKI. A worse right ventricle function was associated with AKI in the final model, whereas cardiac index was not.Peer reviewe

    Clinical examination findings as predictors of acute kidney injury in critically ill patients

    Get PDF
    Background Acute Kidney Injury (AKI) in critically ill patients is associated with a markedly increased morbidity and mortality. The aim of this study was to establish the predictive value of clinical examination for AKI in critically ill patients. Methods This was a sub-study of the SICS-I, a prospective observational cohort study of critically ill patients acutely admitted to the Intensive Care Unit (ICU). Clinical examination was performed within 24 hours of ICU admission. The occurrence of AKI was determined at day two and three after admission according to the KDIGO definition including serum creatinine and urine output. Multivariable regression modeling was used to assess the value of clinical examination for predicting AKI, adjusted for age, comorbidities and the use of vasopressors. Results A total of 1003 of 1075 SICS-I patients (93%) were included in this sub-study. 414 of 1003 patients (41%) fulfilled the criteria for AKI. Increased heart rate (OR 1.12 per 10 beats per minute increase, 98.5% CI 1.04-1.22), subjectively cold extremities (OR 1.52, 98.5% CI 1.07-2.16) and a prolonged capillary refill time on the sternum (OR 1.89, 98.5% CI 1.01-3.55) were associated with AKI. This multivariable analysis yielded an area under the receiver-operating curve (AUROC) of 0.70 (98.5% CI 0.66-0.74). The model performed better when lactate was included (AUROC of 0.72, 95%CI 0.69-0.75), P = .04. Conclusion Clinical examination findings were able to predict AKI with moderate accuracy in a large cohort of critically ill patients. Findings of clinical examination on ICU admission may trigger further efforts to help predict developing AKI

    Discussie. Experimenten met embryo's

    No full text
    corecore