830 research outputs found

    Flux calculations in an inhomogeneous Universe: weighting a flux-limited galaxy sample

    Full text link
    Many astrophysical problems arising within the context of ultra-high energy cosmic rays, very-high energy gamma rays or neutrinos, require calculation of the flux produced by sources tracing the distribution of galaxies in the Universe. We discuss a simple weighting scheme, an application of the method introduced by Lynden-Bell in 1971, that allows the calculation of the flux sky map directly from a flux-limited galaxy catalog without cutting a volume-limited subsample. Using this scheme, the galaxy distribution can be modeled up to large scales while representing the distribution in the nearby Universe with maximum accuracy. We consider fluctuations in the flux map arising from the finiteness of the galaxy sample. We show how these fluctuations are reduced by the weighting scheme and discuss how the remaining fluctuations limit the applicability of the method.Comment: 8 pages, 10 figures, accepted for publication in MNRA

    The Deelen infrasound array for recording sonic booms and events of CTBT interest

    Get PDF
    The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) has build up expertise in infrasound measurements by investigating low frequency events in order to distinguish between seismic and sonic events. KNMI operates, amongst others, a sixteen element microbarometer array with an aperture of 1.5 km, the Deelen Infrasound Array (DIA). Sonic booms and events of Comprehensive Test Ban Treaty (CTBT) interest are recorded within the frequency range of 100 seconds and 40 Hertz. Recently, KNMI and Microflown Technologies B.V. started a collaboration concerning infrasound measurements. This paper reports the use of a novel sensor. The so-called Microflown [1] is an acoustic sensor, sensitive for frequencies from 0Hz up to 1kHz. The Microflown is developed at the University of Twente and commercialised by Microflown Technologies B.V [3]

    Implant Growth Stimulants for Growing and Finishing Cattle.

    Get PDF
    4 p

    On Anisotropy of Ultra-High Energy Cosmic-Rays

    Full text link
    We briefly summarize our study on anisotropy of Ultra-High Energy Cosmic-Rays (UHECRs), in which we define a statistics that measures the correlation between UHECRs and Large Scale Structure (LSS). We also comment here on recently published paper by Koers and Tinyakov that compared our statistics to improved KS statistics.Comment: 3 pages, 2 figures, proceedings of PANIC 2008. v2: version match publication in Nuclear Physics

    Prompt TeV neutrinos from dissipative photospheres of gamma-ray bursts

    Full text link
    Recently, it was suggested that a photospheric component that results from the internal dissipation occurring in the optically thick inner parts of relativistic outflows may be present in the prompt γ\gamma/X-ray emission of gamma-ray bursts or X-ray flashes. We explore high-energy neutrino emission in this dissipative photosphere model, assuming that the composition of the outflow is baryon-dominated. We find that neutrino emission from proton-proton collision process forms an interesting signature in the neutrino spectra. Under favorable conditions for the shock dissipation site, these low-energy neutrinos could be detected by km3{\rm km^3} detectors, such as Icecube. Higher energies (\ga10 TeV) neutrino emission from proton-proton collision and photo-pion production processes could be significantly suppressed for dissipation at relatively small radii, due to efficient Bethe-Heitler cooling of protons and/or radiative cooling of the secondary mesons in the photosphere radiation. As the dissipation shocks continue further out, high energy neutrinos from photo-pion production process becomes dominant.Comment: Accepted by ApJ Letters, some changes made following the referees' comments, conclusions unchanged. The paper was originally submitted to PRL on June 6 (2008); resubmitted to ApJL on Oct.1 (2008); accepted by ApJL on Dec. 9 (2008
    corecore