402 research outputs found

    Application of ERTS-1 imagery and underflight photography in the detection and monitoring of forest insect infections in the Sierra Nevada Mountains of California

    Get PDF
    The author has identified the following significant results. Analysis of ERTS-1 imagery with underflight aerial photo support including U-2, in the Sierra Nevada Mountains of California, indicates promising possibilities of detecting and monitoring forest insect outbreaks visually with some mechanical support utilizing the VP-8 image analyzer. Visually, it is possible at a scale of 1:1,000,000 to discriminate between large areas of damaged and undamaged forests; timbered and non-timbered areas; pasture land and cultivated fields; desert and riparian vegetation. At a scale of 1:80,000 it is possible to distinguish among three classes of tree mortality; defoliated and undefoliated areas; non-host mixed conifers; and mountain meadows, rock domes, lakes and glaciers. Machine tests showed significant differences in image densities among various bands and mortality areas

    Supersymmetric sources, integrability and generalized-structure compactifications

    Full text link
    In the context of supersymmetric compactifications of type II supergravity to four dimensions, we show that orientifold sources can be compatible with a generalized SU(3) x SU(3)-structure that is neither strictly SU(3) nor static SU(2). We illustrate this with explicit examples, obtained by suitably T-dualizing known solutions on the six-torus. In addition we prove the following integrability statements, valid under certain mild assumptions: (a) for general type II supergravity backgrounds with orientifold and/or D-brane generalized-calibrated sources, the source-corrected Einstein and dilaton equations of motion follow automatically from the supersymmetry equations once the likewise source-corrected form equations of motion and Bianchi identities are imposed; (b) in the special case of supersymmetric compactifications to four-dimensional Minkowski space, the equations of motion of all fields, including the NSNS three-form, follow automatically once the supersymmetry and the Bianchi identities of the forms are imposed. Both (a) and (b) are equally valid whether the sources are smeared or localized. As a byproduct we obtain the calibration form for a space-filling NS5-brane.Comment: 32 pages, 1 table, v2: added references, v3: corrected mistake in (4.1) leading to factor 2 mistake in (B.6), corrected (B.5), smaller typo

    Reformulating Supersymmetry with a Generalized Dolbeault Operator

    Full text link
    The conditions for N=1 supersymmetry in type II supergravity have been previously reformulated in terms of generalized complex geometry. We improve that reformulation so as to completely eliminate the remaining explicit dependence on the metric. Doing so involves a natural generalization of the Dolbeault operator. As an application, we present some general arguments about supersymmetric moduli. In particular, a subset of them are then classified by a certain cohomology. We also argue that the Dolbeault reformulation should make it easier to find existence theorems for the N=1 equations.Comment: 30 pages, no figures. v2: minor correction

    The problematic backreaction of SUSY-breaking branes

    Get PDF
    In this paper we investigate the localisation of SUSY-breaking branes which, in the smeared approximation, support specific non-BPS vacua. We show, for a wide class of boundary conditions, that there is no flux vacuum when the branes are described by a genuine delta-function. Even more, we find that the smeared solution is the unique solution with a regular brane profile. Our setup consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b

    Universal de Sitter solutions at tree-level

    Full text link
    Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference

    On moduli and effective theory of N=1 warped flux compactifications

    Full text link
    The moduli space of N=1 type II warped compactions to flat space with generic internal fluxes is studied. Using the underlying integrable generalized complex structure that characterizes these vacua, the different deformations are classified by H-twisted generalized cohomologies and identified with chiral and linear multiplets of the effective four-dimensional theory. The Kaehler potential for chiral fields corresponding to classically flat moduli is discussed. As an application of the general results, type IIB warped Calabi-Yau compactifications and other SU(3)-structure subcases are considered in more detail.Comment: 54 pages; v3: comments and references added, version published in JHE

    Dynamic SU(2) Structure from Seven-branes

    Get PDF
    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.Comment: 49 pages, 2 figures; v2: minor corrections, references adde

    AdS Vacua, Attractor Mechanism and Generalized Geometries

    Full text link
    We consider flux vacua attractor equations in type IIA string theory compactified on generalized geometries with orientifold projections. The four-dimensional N=1 superpotential in this compactification can be written as the sum of the Ramond-Ramond superpotential and a term described by (non)geometric flux charges. We exhibit a simple model in which supersymmetric AdS and Minkowski solutions are classified by means of discriminants of the two superpotentials. We further study various configurations without Ramond-Ramond flux charges. In this case we find supersymmetric AdS vacua both in the case of compactifications on generalized geometries with SU(3) x SU(3) structures and on manifolds with an SU(3)-structure without nongeometric flux charges. In the latter case, we have to introduce correction terms into the prepotential in order to realize consistent vacua.Comment: 35 pages, accepted version in JHE

    D-branes in Generalized Geometry and Dirac-Born-Infeld Action

    Full text link
    The purpose of this paper is to formulate the Dirac-Born-Infeld (DBI) action in a framework of generalized geometry and clarify its symmetry. A D-brane is defined as a Dirac structure where scalar fields and gauge field are treated on an equal footing in a static gauge. We derive generalized Lie derivatives corresponding to the diffeomorphism and B-field gauge transformations and show that the DBI action is invariant under non-linearly realized symmetries for all types of diffeomorphisms and B-field gauge transformations. Consequently, we can interpret not only the scalar field but also the gauge field on the D-brane as the generalized Nambu-Goldstone boson.Comment: 32 pages, 4 figures, ver2:typos corrected, references adde
    corecore