475 research outputs found

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Response of microbial activity to labile C addition in sandy soil from semi-arid woodland is influenced by vegetation patch and wildfire

    Get PDF
    Nutrient cycling in semi-arid woodlands is likely to be influenced by patchy vegetation, wildfire and the supply of easily available organic C, e.g. root exudates. The study assessed the effect of wildfire and vegetation patch on response of microbial activity to labile C addition in soil from a semi-arid Eucalyptus woodland. Two sites were studied: one unburnt and the other exposed to wildfire four-month before sampling. Top soil (0 – 30 cm) from under trees, under shrubs or in open areas from each site was air-dried and sieved to < 2 mm. The soils were incubated at 80% of maximum water holding capacity for 24 days without or with addition of 5 g C kg-1 as glucose. Soil organic carbon (TOC), microbial biomass C, N and P availability and cumulative respiration were greater under trees than in open areas. Fire decreased TOC and cumulative respiration only under trees and had little effect on available N, microbial biomass C and P concentrations. The greater increase in cumulative respiration by glucose addition under shrubs and in open areas compared to under trees and, in a given patch, greater in burnt than unburnt soils, indicate lower availability of native organic carbon.Qiaoqi Sun, Wayne S. Meyer, Georgia R. Koerber, Petra Marschne

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b

    AdS4 flux vacua in type II superstrings and their domain-wall solutions

    Get PDF
    We investigate the emergence of supersymmetric negative-vacuum-energy ground states in four dimensions. First, we rely on the analysis of the effective superpotential, which depends on the background fluxes of the internal manifold, or equivalently has its origin in the underlying gauged supergravity. Four-dimensional, supersymmetric anti-de Sitter vacua with all moduli stabilized appear when appropriate Ramond and Neveu--Schwarz fluxes are introduced in IIA. Geometric fluxes are not necessary. Then the whole setup is analyzed from the perspective of the sources, namely D/NS-branes or Kaluza--Klein monopoles. Orientifold planes are also required for tadpole cancellation. The solutions found in four dimensions correspond to domain walls interpolating between AdS4 and flat spacetime. The various consistency conditions (equations of motion, Bianchi identities and tadpole cancellation conditions) are always satisfied, albeit with source terms. We also speculate on the possibility of assigning (formal) entropies to AdS4 flux vacua via the corresponding dual brane systems.Comment: Acknowledgment replace

    A second look at N=1 supersymmetric AdS_4 vacua of type IIA supergravity

    Full text link
    We show that a class of type IIA vacua recently found within the N=4 effective approach corresponds to compactification on Ads_4 \times S^3 \times S^3/Z_2^3. The results obtained using the effective method completely match the general ten-dimensional analysis for the existence of N=1 warped compactifications on Ads_4 \times M_6. In particular, we verify that the internal metric is nearly-Kahler and that for specific values of the parameters the Bianchi identity of the RR 2-form is fulfilled without sources. For another range of parameters, including the massless case, the Bianchi identity is satisfied when D6-branes are introduced. Solving the tadpole cancellation conditions in D=4 we are able to find examples of appropriate sets of branes. In the second part of this paper we describe how an example with internal space CP^3 but with non nearly-Kahler metric fits into the general analysis of flux vacua.Comment: Latex file, 35 pages, no figures. Reference added, minor corrections adde

    Universal de Sitter solutions at tree-level

    Full text link
    Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference

    On moduli and effective theory of N=1 warped flux compactifications

    Full text link
    The moduli space of N=1 type II warped compactions to flat space with generic internal fluxes is studied. Using the underlying integrable generalized complex structure that characterizes these vacua, the different deformations are classified by H-twisted generalized cohomologies and identified with chiral and linear multiplets of the effective four-dimensional theory. The Kaehler potential for chiral fields corresponding to classically flat moduli is discussed. As an application of the general results, type IIB warped Calabi-Yau compactifications and other SU(3)-structure subcases are considered in more detail.Comment: 54 pages; v3: comments and references added, version published in JHE

    Dynamic SU(2) Structure from Seven-branes

    Get PDF
    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.Comment: 49 pages, 2 figures; v2: minor corrections, references adde

    The problematic backreaction of SUSY-breaking branes

    Get PDF
    In this paper we investigate the localisation of SUSY-breaking branes which, in the smeared approximation, support specific non-BPS vacua. We show, for a wide class of boundary conditions, that there is no flux vacuum when the branes are described by a genuine delta-function. Even more, we find that the smeared solution is the unique solution with a regular brane profile. Our setup consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure

    AdS Vacua, Attractor Mechanism and Generalized Geometries

    Full text link
    We consider flux vacua attractor equations in type IIA string theory compactified on generalized geometries with orientifold projections. The four-dimensional N=1 superpotential in this compactification can be written as the sum of the Ramond-Ramond superpotential and a term described by (non)geometric flux charges. We exhibit a simple model in which supersymmetric AdS and Minkowski solutions are classified by means of discriminants of the two superpotentials. We further study various configurations without Ramond-Ramond flux charges. In this case we find supersymmetric AdS vacua both in the case of compactifications on generalized geometries with SU(3) x SU(3) structures and on manifolds with an SU(3)-structure without nongeometric flux charges. In the latter case, we have to introduce correction terms into the prepotential in order to realize consistent vacua.Comment: 35 pages, accepted version in JHE
    corecore