14,672 research outputs found
General Classical Electrodynamics
Maxwell’s Classical Electrodynamics (MCED) suffers several inconsistencies: (1) the Lorentz force law of MCED violates Newton’s Third Law of Motion (N3LM) in case of stationary and divergent or convergent current distributions; (2) the general Jefimenko electric field solution of MCED shows two longitudinal far fields that are not waves; (3) the ratio of the electrodynamic energy-momentum of a charged sphere in uniform motion has an incorrect factor of 4/3. A consistent General Classical Electrodynamics (GCED) is presented that is based on Whittaker’s reciprocal force law that satisfies N3LM. The Whittaker force is expressed as a scalar magnetic field force, added to the Lorentz force. GCED is consistent only if it is assumed that the electric potential velocity in vacuum, ’a’, is much greater than ’c’ (a ≫ c); GCED reduces to MCED, in case we assume a = c. Longitudinal electromagnetic waves and superluminal longitudinal electric potential waves are predicted. This theory has been verified by seemingly unrelated experiments, such as the detection of superluminal Coulomb fields and longitudinal Ampère forces, and has a wide range of electrical engineering applications
Krein spectral triples and the fermionic action
Motivated by the space of spinors on a Lorentzian manifold, we define Krein
spectral triples, which generalise spectral triples from Hilbert spaces to
Krein spaces. This Krein space approach allows for an improved formulation of
the fermionic action for almost-commutative manifolds. We show by explicit
calculation that this action functional recovers the correct Lagrangians for
the cases of electrodynamics, the electro-weak theory, and the Standard Model.
The description of these examples does not require a real structure, unless one
includes Majorana masses, in which case the internal spaces also exhibit a
Krein space structure.Comment: 17 page
Affine twin R-buildings
AbstractIn this paper, we define twinnings for affine R-buildings. We thus extend the theory of simplicial twin buildings of affine type to the non-simplicial case. We show how classical results can be extended to the non-discrete case, and, as an application, we prove that the buildings at infinity of a Moufang twin R-building have the induced structure of a Moufang building. The latter is not true for ordinary “Moufang” R-buildings
A new structure for difference matrices over abelian -groups
A difference matrix over a group is a discrete structure that is intimately
related to many other combinatorial designs, including mutually orthogonal
Latin squares, orthogonal arrays, and transversal designs. Interest in
constructing difference matrices over -groups has been renewed by the recent
discovery that these matrices can be used to construct large linking systems of
difference sets, which in turn provide examples of systems of linked symmetric
designs and association schemes. We survey the main constructive and
nonexistence results for difference matrices, beginning with a classical
construction based on the properties of a finite field. We then introduce the
concept of a contracted difference matrix, which generates a much larger
difference matrix. We show that several of the main constructive results for
difference matrices over abelian -groups can be substantially simplified and
extended using contracted difference matrices. In particular, we obtain new
linking systems of difference sets of size in infinite families of abelian
-groups, whereas previously the largest known size was .Comment: 27 pages. Discussion of new reference [LT04
- …