2 research outputs found

    Peri-apatite coating decreases uncemented tibial component migration: long-term RSA results of a randomized controlled trial and limitations of short-term results

    No full text
    <p>Background and purpose — Biological fixation of uncemented knee prostheses can be improved by applying hydroxyapatite coating around the porous surface via a solution deposition technique called Peri-Apatite (PA). The 2-year results of a randomized controlled trial, evaluating the effect of PA, revealed several components with continuous migration in the second postoperative year, particularly in the uncoated group. To evaluate whether absence of early stabilization is diagnostic of loosening, we now present long-term follow-up results.</p> <p>Patients and methods — 60 patients were randomized to PA-coated or uncoated (porous only) total knee arthroplasty of which 58 were evaluated with radiostereometric analysis (RSA) performed at baseline, at 3 months postoperatively and at 1, 2, 5, 7, and 10 years. A linear mixed-effects model was used to analyze the repeated measurements.</p> <p>Results — PA-coated components had a statistically significantly lower mean migration at 10 years of 0.94 mm (95% CI 0.72–1.2) compared with the uncoated group showing a mean migration of 1.72 mm (95% CI 1.4–2.1). Continuous migration in the second postoperative year was seen in 7 uncoated components and in 1 PA-coated component. All of these implants stabilized after 2 years except for 2 uncoated components.</p> <p>Interpretation — Peri-apatite enhances stabilization of uncemented components. The number of components that stabilized after 2 years emphasizes the importance of longer follow-up to determine full stabilization and risk of loosening in uncemented components with biphasic migration profiles.</p

    Migration and clinical outcome of mobile-bearing versus fixed-bearing single-radius total knee arthroplasty

    No full text
    <p><b>Background and purpose — Mobile-bearing total knee prostheses (TKPs) were developed in the 1970s in an attempt to increase function and improve implant longevity. However, modern fixed-bearing designs like the single-radius TKP may provide similar advantages. We compared tibial component migration measured with radiostereometric analysis (RSA) and clinical outcome of otherwise similarly designed cemented fixed-bearing and mobile-bearing single-radius TKPs.</b></p> <p><b>Patients and methods — RSA measurements and clinical scores were assessed in 46 randomized patients at baseline, 6 months, 1 year, and annually thereafter up to 6 years postoperatively. A linear mixed-effects model was used to analyze the repeated measurements.</b></p> <p><b>Results — Both groups showed comparable migration (p = 0.3), with a mean migration at 6-year follow-up of 0.90 mm (95% CI 0.49–1.41) for the fixed-bearing group compared with 1.22 mm (95% CI 0.75–1.80) for the mobile-bearing group. Clinical outcomes were similar between groups. 1 fixed-bearing knee was revised for aseptic loosening after 6 years and 2 knees (1 in each group) were revised for late infection. 2 knees (1 in each group) were suspected for loosening due to excessive migration. Another mobile-bearing knee was revised after an insert dislocation due to failure of the locking mechanism 6 weeks postoperatively, after which study inclusion was preliminary terminated.</b></p> <p><b>Interpretation — Fixed-bearing and mobile-bearing single-radius TKPs showed similar migration. The latter may, however, expose patients to more complex surgical techniques and risks such as insert dislocations inherent to this rotating-platform design.</b></p
    corecore