968 research outputs found

    The impact of climate on the disease dynamics of cholera

    Get PDF
    AbstractThe size of infectious disease outbreaks frequently depends on climate influences as well as on the level of immunity in the host population. This is particularly the case with vectorborne and waterborne diseases, for which pathogen transmissibility critically depends on ecological conditions. Here, a mathematical model that was applied to the bacterium Vibrio cholerae to understand its disease dynamics in Bangladesh is reviewed. When interfaced with empirical case data on cholera, the model shows that climate plays a pivotal role in modulating the size of outbreaks, with local, regional, and global indices of climate variability showing a link with pathogen transmissibility. Furthermore, the incidence of cholera may occasionally be surprisingly low at times when climate seems to favour cholera transmission

    Imaging of Thermal Domains in ultrathin NbN films for Hot Electron Bolometers

    Full text link
    We present low-temperature scanning electron microscopy (LTSEM) investigations of superconducting microbridges made from ultrathin NbN films as used for hot electron bolometers. LTSEM probes the thermal structure within the microbridges under various dc current bias conditions, either via electron-beam-induced generation of an unstable hotspot, or via the beam-induced growth of a stable hotspot. Such measurements reveal inhomogeneities on a micron scale, which may be due to spatial variations in the NbN film or film-interface properties. Comparison with model calculations for the stable hotspot regime confirm the basic features of common hot spot models.Comment: 3 pages, 3 figure

    Ratchet effect in dc SQUIDs

    Full text link
    We analyzed voltage rectification for dc SQUIDs biased with ac current with zero mean value. We demonstrate that the reflection symmetry in the 2-dimensional SQUID potential is broken by an applied flux and with appropriate asymmetries in the dc SQUID. Depending on the type of asymmetry, we obtain a rocking or a simultaneously rocking and flashing ratchet, the latter showing multiple sign reversals in the mean voltage with increasing amplitude of the ac current. Our experimental results are in agreement with numerical solutions of the Langevin equations for the asymmetric dc SQUID.Comment: 10 pages including 5 Postscript figure

    Josephson junctions with negative second harmonic in the current-phase relation: properties of novel varphi-junctions

    Full text link
    Several recent experiments revealed a change of the sign of the first harmonic in the current-phase relation of Josephson junctions (JJ) based on novel superconductors, e.g., d-wave based or JJ with ferromagnetic barrier. In this situation the role of the second harmonic becomes dominant and it determines the scenario of a 0-pi transition. We discuss different mechanisms of the second harmonic generation and its sign. If the second harmonic is negative the 0-pi transition becomes continuous and the realization of the so-called varphi junction is possible. We study the unusual properties of such a novel JJ and analyze the possible experimental techniques for their observation.Comment: submitted to PR

    Direct current superconducting quantum interferometers with asymmetric shunt resistors

    Full text link
    We have investigated asymmetrically shunted Nb/Al-AlOx_x/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance RR identical to a comparable symmetric SQUID with R1=R11+R21R^{-1} = R_1^{-1} + R_2^{-1}, we shunted only one of the two Josephson junctions with R=R1,2/2R = R_{1,2}/2. Simulations predict that the optimum energy resolution ϵ\epsilon and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2\,K yielded ϵ32\epsilon \approx 32\,\hbar for an asymmetric SQUID with an inductance of 22pH22\,\rm{pH}. For a comparable symmetric device ϵ=110\epsilon = 110\,\hbar was achieved, confirming our simulation results.Comment: 5 pages, 4 figure

    Suppression of dissipation in Nb thin films with triangular antidot arrays by random removal of pinning sites

    Full text link
    The depinning current Ic versus applied magnetic field B close to the transition temperature Tc of Nb thin films with randomly diluted triangular arrays of antidots is investigated. % Our experiments confirm essential features in Ic(B) as predicted by Reichhardt and Olson Reichhardt [Phys.Rev. B 76, 094512 (2007)]. % We show that, by introducing disorder into periodic pinning arrays, Ic can be enhanced. % In particular, for arrays with fixed density n_p of antidots, an increase in dilution Pd induces an increase in Ic and decrease of the flux-flow voltage for B>Bp=n_p Phi_0.Comment: 5 pages, 4 figure

    Spectroscopy of a fractional Josephson vortex molecule

    Full text link
    In long Josephson junctions with multiple discontinuities of the Josephson phase, fractional vortex molecules are spontaneously formed. At each discontinuity point a fractional Josephson vortex carrying a magnetic flux Φ<Φ0|\Phi|<\Phi_0, Φ02.07×1015\Phi_0\approx 2.07\times 10^{-15} Wb being the magnetic flux quantum, is pinned. Each vortex has an oscillatory eigenmode with a frequency that depends on Φ/Φ0\Phi/\Phi_0 and lies inside the plasma gap. We experimentally investigate the dependence of the eigenfrequencies of a two-vortex molecule on the distance between the vortices, on their topological charge =2πΦ/Φ0\wp=2\pi\Phi/\Phi_0 and on the bias current γ\gamma applied to the Josephson junction. We find that with decreasing distance between vortices, a splitting of the eigenfrequencies occurs, that corresponds to the emergence of collective oscillatory modes of both vortices. We use a resonant microwave spectroscopy technique and find good agreement between experimental results and theoretical predictions.Comment: submitted to Phys. Rev.

    Canalization of the evolutionary trajectory of the human influenza virus

    Get PDF
    Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. Antigenic evolution occurs in the context of a two-dimensional 'antigenic map', while genetic evolution shows a characteristic ladder-like genealogical tree. Here, we use a large-scale individual-based model to show that evolution in a Euclidean antigenic space provides a remarkable correspondence between model behavior and the epidemiological, antigenic, genealogical and geographic patterns observed in influenza virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. Thus, selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable and hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure

    High quality ferromagnetic 0 and pi Josephson tunnel junctions

    Get PDF
    We fabricated high quality \Nb/\Al_2\O_3/\Ni_{0.6}\Cu_{0.4}/\Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Depending on the thickness of the ferromagnetic \Ni_{0.6}\Cu_{0.4} layer and on the ambient temperature, the junctions were in the 0 or π\pi ground state. All junctions have homogeneous interfaces showing almost perfect Fraunhofer patterns. The \Al_2\O_3 tunnel barrier allows to achieve rather low damping, which is desired for many experiments especially in the quantum domain. The McCumber parameter βc\beta_c increases exponentially with decreasing temperature and reaches βc700\beta_c\approx700 at T=2.1KT=2.1 {\rm K}. The critical current density in the π\pi state was up to 5A/cm25\:\rm{A/cm^2} at T=2.1KT=2.1 {\rm K}, resulting in a Josephson penetration depth λJ\lambda_J as low as 160μm160\:\rm{\mu m}. Experimentally determined junction parameters are well described by theory taking into account spin-flip scattering in the \Ni_{0.6}\Cu_{0.4} layer and different transparencies of the interfaces.Comment: Changed content and Corrected typo
    corecore