968 research outputs found
The impact of climate on the disease dynamics of cholera
AbstractThe size of infectious disease outbreaks frequently depends on climate influences as well as on the level of immunity in the host population. This is particularly the case with vectorborne and waterborne diseases, for which pathogen transmissibility critically depends on ecological conditions. Here, a mathematical model that was applied to the bacterium Vibrio cholerae to understand its disease dynamics in Bangladesh is reviewed. When interfaced with empirical case data on cholera, the model shows that climate plays a pivotal role in modulating the size of outbreaks, with local, regional, and global indices of climate variability showing a link with pathogen transmissibility. Furthermore, the incidence of cholera may occasionally be surprisingly low at times when climate seems to favour cholera transmission
Imaging of Thermal Domains in ultrathin NbN films for Hot Electron Bolometers
We present low-temperature scanning electron microscopy (LTSEM)
investigations of superconducting microbridges made from ultrathin NbN films as
used for hot electron bolometers. LTSEM probes the thermal structure within the
microbridges under various dc current bias conditions, either via
electron-beam-induced generation of an unstable hotspot, or via the
beam-induced growth of a stable hotspot. Such measurements reveal
inhomogeneities on a micron scale, which may be due to spatial variations in
the NbN film or film-interface properties. Comparison with model calculations
for the stable hotspot regime confirm the basic features of common hot spot
models.Comment: 3 pages, 3 figure
Ratchet effect in dc SQUIDs
We analyzed voltage rectification for dc SQUIDs biased with ac current with
zero mean value. We demonstrate that the reflection symmetry in the
2-dimensional SQUID potential is broken by an applied flux and with appropriate
asymmetries in the dc SQUID. Depending on the type of asymmetry, we obtain a
rocking or a simultaneously rocking and flashing ratchet, the latter showing
multiple sign reversals in the mean voltage with increasing amplitude of the ac
current. Our experimental results are in agreement with numerical solutions of
the Langevin equations for the asymmetric dc SQUID.Comment: 10 pages including 5 Postscript figure
Josephson junctions with negative second harmonic in the current-phase relation: properties of novel varphi-junctions
Several recent experiments revealed a change of the sign of the first
harmonic in the current-phase relation of Josephson junctions (JJ) based on
novel superconductors, e.g., d-wave based or JJ with ferromagnetic barrier. In
this situation the role of the second harmonic becomes dominant and it
determines the scenario of a 0-pi transition. We discuss different mechanisms
of the second harmonic generation and its sign. If the second harmonic is
negative the 0-pi transition becomes continuous and the realization of the
so-called varphi junction is possible. We study the unusual properties of such
a novel JJ and analyze the possible experimental techniques for their
observation.Comment: submitted to PR
Direct current superconducting quantum interferometers with asymmetric shunt resistors
We have investigated asymmetrically shunted Nb/Al-AlO/Nb direct current
(dc) superconducting quantum interference devices (SQUIDs). While keeping the
total resistance identical to a comparable symmetric SQUID with , we shunted only one of the two Josephson junctions with
. Simulations predict that the optimum energy resolution
and thus also the noise performance of such an asymmetric SQUID can
be 3--4 times better than that of its symmetric counterpart. Experiments at a
temperature of 4.2\,K yielded for an asymmetric
SQUID with an inductance of . For a comparable symmetric device
was achieved, confirming our simulation results.Comment: 5 pages, 4 figure
Suppression of dissipation in Nb thin films with triangular antidot arrays by random removal of pinning sites
The depinning current Ic versus applied magnetic field B close to the
transition temperature Tc of Nb thin films with randomly diluted triangular
arrays of antidots is investigated. % Our experiments confirm essential
features in Ic(B) as predicted by Reichhardt and Olson Reichhardt [Phys.Rev. B
76, 094512 (2007)]. % We show that, by introducing disorder into periodic
pinning arrays, Ic can be enhanced. % In particular, for arrays with fixed
density n_p of antidots, an increase in dilution Pd induces an increase in Ic
and decrease of the flux-flow voltage for B>Bp=n_p Phi_0.Comment: 5 pages, 4 figure
Spectroscopy of a fractional Josephson vortex molecule
In long Josephson junctions with multiple discontinuities of the Josephson
phase, fractional vortex molecules are spontaneously formed. At each
discontinuity point a fractional Josephson vortex carrying a magnetic flux
, Wb being the magnetic flux
quantum, is pinned. Each vortex has an oscillatory eigenmode with a frequency
that depends on and lies inside the plasma gap.
We experimentally investigate the dependence of the eigenfrequencies of a
two-vortex molecule on the distance between the vortices, on their topological
charge and on the bias current applied to the
Josephson junction. We find that with decreasing distance between vortices, a
splitting of the eigenfrequencies occurs, that corresponds to the emergence of
collective oscillatory modes of both vortices. We use a resonant microwave
spectroscopy technique and find good agreement between experimental results and
theoretical predictions.Comment: submitted to Phys. Rev.
Canalization of the evolutionary trajectory of the human influenza virus
Since its emergence in 1968, influenza A (H3N2) has evolved extensively in
genotype and antigenic phenotype. Antigenic evolution occurs in the context of
a two-dimensional 'antigenic map', while genetic evolution shows a
characteristic ladder-like genealogical tree. Here, we use a large-scale
individual-based model to show that evolution in a Euclidean antigenic space
provides a remarkable correspondence between model behavior and the
epidemiological, antigenic, genealogical and geographic patterns observed in
influenza virus. We find that evolution away from existing human immunity
results in rapid population turnover in the influenza virus and that this
population turnover occurs primarily along a single antigenic axis. Thus,
selective dynamics induce a canalized evolutionary trajectory, in which the
evolutionary fate of the influenza population is surprisingly repeatable and
hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure
High quality ferromagnetic 0 and pi Josephson tunnel junctions
We fabricated high quality \Nb/\Al_2\O_3/\Ni_{0.6}\Cu_{0.4}/\Nb
superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions.
Depending on the thickness of the ferromagnetic \Ni_{0.6}\Cu_{0.4} layer and
on the ambient temperature, the junctions were in the 0 or ground state.
All junctions have homogeneous interfaces showing almost perfect Fraunhofer
patterns. The \Al_2\O_3 tunnel barrier allows to achieve rather low damping,
which is desired for many experiments especially in the quantum domain. The
McCumber parameter increases exponentially with decreasing
temperature and reaches at . The critical
current density in the state was up to at , resulting in a Josephson penetration depth as low as
. Experimentally determined junction parameters are well
described by theory taking into account spin-flip scattering in the
\Ni_{0.6}\Cu_{0.4} layer and different transparencies of the interfaces.Comment: Changed content and Corrected typo
- …