3 research outputs found

    Genes in the Ureteric Budding Pathway: Association Study on Vesico-Ureteral Reflux Patients

    Get PDF
    Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ∼50% showed a clear-cut primary VUR phenotype and ∼25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR

    Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline

    No full text
    SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136 17) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843 17 and compound heterozygote p.Gln647Argfs 176/p.Ser1122Thrfs 173) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology

    Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU

    No full text
    corecore