26 research outputs found

    An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning

    Get PDF
    International audiencePROBLEM/BACKGROUND: In order to help hepatic surgical planning we perfected automatic 3D reconstruction of patients from conventional CT-scan, and interactive visualization and virtual resection tools. TOOLS AND METHODS: From a conventional abdominal CT-scan, we have developed several methods allowing the automatic 3D reconstruction of skin, bones, kidneys, lung, liver, hepatic lesions, and vessels. These methods are based on deformable modeling or thresholding algorithms followed by the application of mathematical morphological operators. From these anatomical and pathological models, we have developed a new framework for translating anatomical knowledge into geometrical and topological constraints. More precisely, our approach allows to automatically delineate the hepatic and portal veins but also to label the portal vein and finally to build an anatomical segmentation of the liver based on Couinaud definition which is currently used by surgeons all over the world. Finally, we have developed a user friendly interface for the 3D visualization of anatomical and pathological structures, the accurate evaluation of volumes and distances and for the virtual hepatic resection along a user-defined cutting plane. RESULTS: A validation study on a 30 patients database gives 2 mm of precision for liver delineation and less than 1 mm for all other anatomical and pathological structures delineation. An in vivo validation performed during surgery also showed that anatomical segmentation is more precise than the delineation performed by a surgeon based on external landmarks. This surgery planning system has been routinely used by our medical partner, and this has resulted in an improvement of the planning and performance of hepatic surgery procedures. CONCLUSION: We have developed new tools for hepatic surgical planning allowing a better surgery through an automatic delineation and visualization of anatomical and pathological structures. These tools represent a first step towards the development of an augmented reality system combined with computer assisted tele-robotical surgery

    Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery

    Get PDF
    International audienceOBJECTIVE: To improve the planning of hepatic surgery, we have developed a fully automatic anatomical, pathological, and functional segmentation of the liver derived from a spiral CT scan. MATERIALS AND METHODS: From a 2 mm-thick enhanced spiral CT scan, the first stage automatically delineates skin, bones, lungs, kidneys, and spleen by combining the use of thresholding, mathematical morphology, and distance maps. Next, a reference 3D model is immersed in the image and automatically deformed to the liver contours. Then an automatic Gaussian fitting on the imaging histogram estimates the intensities of parenchyma, vessels, and lesions. This first result is next improved through an original topological and geometrical analysis, providing an automatic delineation of lesions and veins. Finally, a topological and geometrical analysis based on medical knowledge provides hepatic functional information that is invisible in medical imaging: portal vein labeling and hepatic anatomical segmentation according to the Couinaud classification. RESULTS: Clinical validation performed on more than 30 patients shows that delineation of anatomical structures by this method is often more sensitive and more specific than manual delineation by a radiologist. CONCLUSION: This study describes the methodology used to create the automatic segmentation of the liver with delineation of important anatomical, pathological, and functional structures from a routine CT scan. Using the methods proposed in this study, we have confirmed the accuracy and utility of the creation of a 3D liver model compared with the conventional reading of the CT scan by a radiologist. This work may allow improved preoperative planning of hepatic surgery by more precisely delineating liver pathology and its relationship to normal hepatic structures. In the future, this data may be integrated with computer-assisted surgery and thus represents a first step towards the development of an augmented-reality surgical system

    Surfing on Turbulence: A Strategy for Planktonic Navigation

    No full text
    International audienceIn marine plankton, many swimming species can perceive their environment with flow sensors. Can they use this flow information to travel faster in turbulence? To address this question, we consider plankters swimming at constant speed, whose goal is to move upwards. We propose a robust analytical behavior that allows plankters to choose a swimming direction according to the local flow gradients. We show numerically that such plankters can "surf" on turbulence and reach net vertical speeds up to twice their swimming speed. This new physics-based model suggests that planktonic organisms can exploit turbulence features for navigation

    Surfing on turbulence: a strategy for planktonic navigation

    No full text
    In marine plankton, many swimming species can perceive their environment with flow sensors. Can they use this flow information to travel faster in turbulence? To address this question, we consider plankters swimming at constant speed, whose goal is to move upwards. We propose a robust analytical behavior that allows plankters to choose a swimming direction according to the local flow gradients. We show numerically that such plankters can "surf" on turbulence and reach net vertical speeds up to twice their swimming speed. This new physics-based model suggests that planktonic organisms can exploit turbulence features for navigation

    Virtual Reality and Augmented Reality in Digestive Surgery

    No full text
    International audienceno abstrac

    Finance d'entreprise

    No full text
    International audienc

    Finance d'entreprise

    No full text
    International audienc
    corecore