198 research outputs found

    The Glymphatic System: a Potential Key Player in Bacterial Meningitis

    Get PDF
    The glial-lymphatic system (glymphatic system) is a recently characterized fluid clearance pathway of the central nervous system. Glymphatic system disfunctions leading to defects in drainage of the cerebrospinal fluid have been associated with several neurological disorders. In their article, J. S. Generoso, S. Thorsdottir, A. Collodel, R. R. E. Santo, et al. (mBio 13:e01886-22, 2022, https://doi.org/10.1128/mBio.01886-22) have now associated impaired glymphatic system functionality to neurological sequelae of murine meningitis caused by Streptococcus pneumoniae. Their work provides an initial and important step into the systematic evaluation of a potential impact of glymphatic system functionality on disease severity and sequelae in meningitis

    Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis

    Get PDF
    During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils

    Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis

    Get PDF
    Background: Approximately 7% of survivors from meningococcal meningitis (MM) suffer from neurological sequelae due to brain damage in the course of meningitis. The present study focuses on the role of matrix metalloproteinases (MMPs) in a novel mouse model of MM-induced brain damage. Methods: The model is based on intracisternal infection of BALB/c mice with a serogroup C Neisseria meningitidis strain. Mice were infected with meningococci and randomised for treatment with the MMP inhibitor batimastat (BB-94) or vehicle. Animal survival, brain injury and host-response biomarkers were assessed 48 h after meningococcal challenge. Results: Mice that received BB-94 presented significantly diminished MMP-9 levels (p < 0.01), intracerebral bleeding (p < 0.01), and blood brain barrier (BBB) breakdown (p < 0.05) in comparison with untreated animals. In mice suffering from MM, the amount of MMP- 9 measured by zymography significantly correlated with both intracerebral haemorrhage (p < 0.01) and BBB disruption (p < 0.05). Conclusions: MMPs significantly contribute to brain damage associated with experimental MM. Inhibition of MMPs reduces intracranial complications in mice suffering from MM, representing a potential adjuvant strategy in MM post-infection sequelae

    Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis

    Get PDF
    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6 deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment

    Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci

    Get PDF
    Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved molecular patterns expressed by pathogens. Pneumolysin, an intracellular toxin found in all Streptococcus pneumoniae clinical isolates, is an important virulence factor of the pneumococcus that is recognized by TLR4. Although TLR2 is considered the most important receptor for Gram-positive bacteria, our laboratory previously could not demonstrate a decisive role for TLR2 in host defence against pneumonia caused by a serotype 3 S. pneumoniae. Here we tested the hypothesis that in the absence of TLR2, S. pneumoniae can still be sensed by the immune system through an interaction between pneumolysin and TLR4. C57BL/6 wild-type (WT) and TLR2 knockout (KO) mice were intranasally infected with either WT S. pneumoniae D39 (serotype 2) or the isogenic pneumolysin-deficient S. pneumoniae strain D39 PLN. TLR2 did not contribute to antibacterial defence against WT S. pneumoniae D39. In contrast, pneumolysin-deficient S. pneumoniae only grew in lungs of TLR2 KO mice. TLR2 KO mice displayed a strongly reduced early inflammatory response in their lungs during pneumonia caused by both pneumolysin-producing and pneumolysin-deficient pneumococci. These data suggest that pneumolysin-induced TLR4 signalling can compensate for TLR2 deficiency during respiratory tract infection with S. pneumoniae

    Adjuvant TACE inhibitor treatment improves the outcome of TLR2(-/- )mice with experimental pneumococcal meningitis

    Get PDF
    BACKGROUND: Streptococcus (S.) pneumoniae meningitis has a high lethality despite antibiotic treatment. Inflammation is a major pathogenetic factor, which is unresponsive to antibiotics. Therefore adjunctive therapies with antiinflammatory compounds have been developed. TNF484 is a TNF-alpha converting enzyme (TACE) inhibitor and has been found efficacious in experimental meningitis. Toll-like receptor 2 (TLR2) contributes to host response in pneumococcal meningitis by enhancing bacterial clearing and downmodulating inflammation. In this study, TNF484 was applied in mice, which lacked TLR2 and exhibited a strong meningeal inflammation. METHODS: 10(3 )CFU S. pneumoniae serotype 3 was inoculated subarachnoidally into C57BL/6 wild type (wt) mice or TLR2(-/-), CD14(-/- )and CD14(-/-)/TLR2(-/- )mice. Severity of disease and survival was followed over 9 days. Response to antibiotics (80 mg/kg ceftriaxone i.p. for 5 days) and/or TACE inhibitor treatment (1 mg/kg s.c. twice daily for 4 days) was evaluated. Animals were sacrificed after 12, 24, and 48 h for analysis of bacterial load in cerebrospinal fluid (CSF) and brain and for TNF and leukocyte measurements in CSF. RESULTS: TLR2(-/- )mice were significantly sicker than the other mouse strains 24 h after infection. All knockout mice showed higher disease severity after 48 h and died earlier than wt mice. TNF release into CSF was significantly more elevated in TLR2(-/- )than in the other strains after 24 h. Brain bacterial numbers were significantly higher in all knockout than wt mice after 24 h. Modulation of outcome by antibiotic and TACE inhibitor treatment was evaluated. With antibiotic therapy all wt, CD14(-/- )and TLR2(-/-)/CD14(-/- )mice, but only 79% of TLR2(-/- )mice, were rescued. TACE inhibitor treatment alone did not rescue, but prolonged survival in wt mice, and in TLR2(-/- )and CD14(-/- )mice to the values observed in untreated wt mice. By combined antibiotic and TACE inhibitor treatment 95% of TLR2(-/- )mice were rescued. CONCLUSION: During pneumococcal meningitis strong inflammation in TLR2-deficiency was associated with incomplete responsiveness to antibiotics and complete response to combined antibiotic and TACE inhibitor treatment. TACE inhibitor treatment offers a promising adjuvant therapeutic strategy in pneumococcal meningitis

    In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies.</p> <p>Methods</p> <p>Rats infected intracisternally with <it>S. pneumoniae </it>(n = 29) or saline (n = 13) were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured.</p> <p>Results</p> <p>MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease severity was closely related to ventricle expansion (P = 0.024).</p> <p>Changes in brain water distribution, assessed by ADC, and categorization of brain 'perfusion' by cortex ΔSI<sub>(bolus) </sub>were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-'perfused' muscle decreased with the progression of infection indicative of septicaemia (P = 0.05).</p> <p>Conclusion</p> <p>The evolution of bacterial meningitis was successfully followed <it>in-vivo </it>with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments</p

    Extracellular MRP8/14 is a regulator of beta 2 integrin-dependent neutrophil slow rolling and adhesion

    No full text
    Myeloid-related proteins (MRPs) 8 and 14 are cytosolic proteins secreted from myeloid cells as proinflammatory mediators. Currently, the functional role of circulating extracellular MRP8/14 is unclear. Our present study identifies extracellular MRP8/14 as an autocrine player in the leukocyte adhesion cascade. We show that E-selectin-PSGL-1 interaction during neutrophil rolling triggers Mrp8/14 secretion. Released MRP8/14 in turn activates a TLR4-mediated, Rap1-GTPase-dependent pathway of rapid beta 2 integrin activation in neutrophils. This extracellular activation loop reduces leukocyte rolling velocity and stimulates adhesion. Thus, we identify Mrp8/14 and TLR4 as important modulators of the leukocyte recruitment cascade during inflammation in vivo

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
    corecore