4 research outputs found

    At age 9, the methylome of assisted reproductive technology children that underwent embryo culture in different media is not significantly different on a genome-wide scale

    No full text
    STUDY QUESTION: Can we detect DNA methylation differences between ART children that underwent embryo culture in different media? SUMMARY ANSWER: We identified no significant differences in site-specific or regional DNA methylation between the different culture medium groups. WHAT IS KNOWN ALREADY: Embryo culture in G3 or K-SICM medium leads to differences in embryonic, neonatal and childhood outcomes, including growth and weight. The methylome may mediate this association as the period of in vitro culture of ART treatments coincides with epigenetic reprogramming. STUDY DESIGN, SIZE, DURATION: This study was conducted as a follow-up to a previous culture medium comparison study in which couples were pseudo-randomized to embryo culture in G3 or K-SICM medium. Of the resultant singletons, 120 (n = 65 G3, n = 55 K-SICM), were recruited at age 9. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ART children provided a saliva sample from which the methylome was analysed using the Infinium MethylationEPIC array. After quality and context filtering, 106 (n = 57 G3, n = 49 K-SICM) samples and 659 708 sites were retained for the analyses. Differential methylation analyses were conducted using mixed effects linear models corrected for age, sex, sample plate and cell composition. These were applied to all cytosine-guanine dinucleotide (CpG) sites, various genomic regions (genes, promoters, CpG Islands (CGIs)) and as a targeted analysis of imprinted genes and birth weight-associated CpG sites. Differential variance was assessed using the improved epigenetic variable outliers for risk prediction analysis (iEVORA) algorithm and methylation outliers were identified using a previously defined threshold (upper or lower quartile plus or minus three times the interquartile range, respectively). MAIN RESULTS AND THE ROLE OF CHANCE: After correcting for multiple testing, we did not identify any significantly differentially methylated CpG sites, genes, promoters or CGIs between G3 and K-SICM children despite a lenient corrected P-value threshold of 0.1. Targeted analyses of (sites within) imprinted genes and birth weight-associated sites also did not identify any significant differences. The number of DNA methylation outliers per sample was comparable between the culture medium groups. iEVORA identified 101 differentially variable CpG sites of which 94 were more variable in the G3 group. LARGE SCALE DATA: Gene Expression Omnibus (GEO) GSE196432. LIMITATIONS, REASONS FOR CAUTION: To detect significant methylation differences with a magnitude of <10% between the groups many more participants would be necessary; however, the clinical relevance of such small differences is unclear. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study are reassuring, suggesting that if there is an effect of the culture medium on DNA methylation (and methylation-mediated diseases risk), it does not differ between the two media investigated here. The findings concur with other methylome studies of ART neonates and children that underwent embryo culture in different media, which also found no significant methylome differences. STUDY FUNDING/COMPETING INTEREST(S): Study funded by March of Dimes (6-FY13-153), EVA (Erfelijkheid Voortplanting & Aanleg) specialty programme (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. The authors do not report any conflicts of interest relevant to this study. TRIAL REGISTRATION NUMBER: Dutch Trial register-NL4083

    At age 9, the methylome of assisted reproductive technology children that underwent embryo culture in different media is not significantly different on a genome-wide scale

    No full text
    International audienceSTUDY QUESTION Can we detect DNA methylation differences between ART children that underwent embryo culture in different media?SUMMARY ANSWER We identified no significant differences in site-specific or regional DNA methylation between the different culture medium groups. WHAT IS KNOWN ALREADY Embryo culture in G3 or K-SICM medium leads to differences in embryonic, neonatal and childhood outcomes, including growth and weight. The methylome may mediate this association as the period of in vitro culture of ART treatments coincides with epigenetic reprogramming. STUDY DESIGN, SIZE, DURATION This study was conducted as a follow-up to a previous culture medium comparison study in which couples were pseudo-randomized to embryo culture in G3 or K-SICM medium. Of the resultant singletons, 120 (n = 65 G3, n = 55 K-SICM), were recruited at age 9. PARTICIPANTS/MATERIALS, SETTING, METHODS The ART children provided a saliva sample from which the methylome was analysed using the Infinium MethylationEPIC array. After quality and context filtering, 106 (n = 57 G3, n = 49 K-SICM) samples and 659 708 sites were retained for the analyses. Differential methylation analyses were conducted using mixed effects linear models corrected for age, sex, sample plate and cell composition. These were applied to all cytosine-guanine dinucleotide (CpG) sites, various genomic regions (genes, promoters, CpG Islands (CGIs)) and as a targeted analysis of imprinted genes and birth weight-associated CpG sites. Differential variance was assessed using the improved epigenetic variable outliers for risk prediction analysis (iEVORA) algorithm and methylation outliers were identified using a previously defined threshold (upper or lower quartile plus or minus three times the interquartile range, respectively). MAIN RESULTS AND THE ROLE OF CHANCE After correcting for multiple testing, we did not identify any significantly differentially methylated CpG sites, genes, promoters or CGIs between G3 and K-SICM children despite a lenient corrected P-value threshold of 0.1. Targeted analyses of (sites within) imprinted genes and birth weight-associated sites also did not identify any significant differences. The number of DNA methylation outliers per sample was comparable between the culture medium groups. iEVORA identified 101 differentially variable CpG sites of which 94 were more variable in the G3 group. LARGE SCALE DATA Gene Expression Omnibus (GEO) GSE196432 LIMITATIONS, REASONS FOR CAUTION To detect significant methylation differences with a magnitude of <10% between the groups many more participants would be necessary; however, the clinical relevance of such small differences is unclear. WIDER IMPLICATIONS OF THE FINDINGS The results of this study are reassuring, suggesting that if there is an effect of the culture medium on DNA methylation (and methylation-mediated diseases risk), it does not differ between the two media investigated here. The findings concur with other methylome studies of ART neonates and children that underwent embryo culture in different media, which also found no significant methylome differences

    Methylome-wide analysis of IVF neonates that underwent embryo culture in different media revealed no significant differences

    No full text
    International audienceA growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration

    Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss

    No full text
    Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition
    corecore