404 research outputs found

    Madagascar

    Get PDF

    The Network Architecture of Cortical Processing in Visuo-spatial Reasoning

    Get PDF
    Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences

    Speckle observations of the binary asteroid (22) Kalliope with C2PU/PISCO

    Full text link
    We present new speckle measurements of the position of Linus, the satellite of the asteroid (22) Kalliope, obtained at the 1m C2PU-Epsilon telescope on the Plateau de Calern, France. Observations were made in the visible domain with the speckle camera PISCO. We obtained 122 measurements in February-March 2022 and April 2023, with a mean uncertainty close to 10 milli-arcseconds on the angular separation

    Understanding micro-processes of community building and mutual learning on Twitter: a ‘small data’ approach

    Get PDF
    This article contributes to an emerging field of ‘small data’ research on Twitter by presenting a case study of how teachers and students at a sixth-form college in the north of England used this social media platform to help construct a ‘community of practice’ that enabled micro-processes of recognition and mutual learning. Conducted as part of a broader action research project that focused on the ‘digital story circle’ as a site of, and for, narrative exchange and knowledge production, this study takes the form of a detailed analysis of a departmental Twitter account, combining basic quantitative metrics, close reading of selected Twitter data and qualitative interviews with teachers and students. Working with (and sometimes against) Twitter's platform architecture, teachers and students constructed, through distinct patterns of use, a shared space for dialogue that facilitated community building within the department. On the whole, they were able to overcome justified anxieties about professionalism and privacy; this was achieved by building on high levels of pre-existing trust among staff and by performing that mutual trust online through personal modes of communication. Through micro-processes of recognition and a breaking down of conventional hierarchies that affirmed students' agency as knowledge producers, the departmental Twitter account enabled mutual learning beyond curriculum and classroom. The significance of such micro-processes could only have been uncovered through the detailed scrutiny that a ‘small data’ approach to Twitter, in supplement to some obvious virtues of Big Data approaches, is particularly well placed to provide

    Mechanisms of subliminal response priming

    Get PDF
    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes’ impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these “action triggers” directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    The Spectral Energy Distribution and Mass-loss Rate of the A-Type Supergiant Deneb

    Get PDF
    A stellar wind module has been developed for the PHOENIX stellar atmosphere code for the purpose of computing non-LTE, line-blanketed, expanding atmospheric structures and detailed synthetic spectra of hot luminous stars with winds. We apply the code to observations of Deneb, for which we report the first positive detections of mm and cm emission (obtained using the SCUBA and the VLA), as well a strong upper limit on the 850 micron flux (using the HHT). The slope of the radio spectrum shows that the stellar wind is partially ionized. We report a uniform-disk angular diameter measurement, 2.40 +/- 0.06 mas, from the Navy Prototype Optical Interferometer (NPOI). The measured bolometric flux and corrected NPOI angular diameter yield an effective temperature of 8600 +/- 500 K. Least-squares comparisons of synthetic spectral energy distributions from 1220 A to 3.6 cm with the observations provide estimates for the effective temperature and the mass-loss rate of 8400 +/- 100 K and 8 +/- 3 E-7 M_sun/yr, respectively. This range of mass-loss rates is consistent with that derived from high dispersion UV spectra when non-LTE metal-line blanketing is considered. We are unable achieve a reasonable fit to a typical Halpha P-Cygni profile with any model parameters over a reasonable range. This is troubling because the \ha profile is the observational basis for Wind Momentum-Luminosity Relationship.Comment: Accepted by the Astrophysical Journal, 43 pages, 23 figure
    • 

    corecore