143 research outputs found

    Magnetic states in multiply-connected flat nano-elements

    Get PDF
    Flat magnetic nano-elements are an essential component of current and future spintronic devices. By shaping an element it is possible to select and stabilize chosen metastable magnetic states, control its magnetization dynamics. Here, using a recent significant development in mathematics of conformal mapping, complex variable based approach to the description of magnetic states in planar nano-elements is extended to the case when elements are multiply-connected (that is, contain holes or magnetic anti-dots). We show that presence of holes implies a certain restriction on the set of magnetic states of nano-element.Comment: 5 pages, 7 figure

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    Geometry of Polynomials and Root-Finding via Path-Lifting

    Full text link
    Using the interplay between topological, combinatorial, and geometric properties of polynomials and analytic results (primarily the covering structure and distortion estimates), we analyze a path-lifting method for finding approximate zeros, similar to those studied by Smale, Shub, Kim, and others. Given any polynomial, this simple algorithm always converges to a root, except on a finite set of initial points lying on a circle of a given radius. Specifically, the algorithm we analyze consists of iterating zf(z)tkf(z0)f(z)z - \frac{f(z)-t_kf(z_0)}{f'(z)} where the tkt_k form a decreasing sequence of real numbers and z0z_0 is chosen on a circle containing all the roots. We show that the number of iterates required to locate an approximate zero of a polynomial ff depends only on logf(z0)/ρζ\log|f(z_0)/\rho_\zeta| (where ρζ\rho_\zeta is the radius of convergence of the branch of f1f^{-1} taking 00 to a root ζ\zeta) and the logarithm of the angle between f(z0)f(z_0) and certain critical values. Previous complexity results for related algorithms depend linearly on the reciprocals of these angles. Note that the complexity of the algorithm does not depend directly on the degree of ff, but only on the geometry of the critical values. Furthermore, for any polynomial ff with distinct roots, the average number of steps required over all starting points taken on a circle containing all the roots is bounded by a constant times the average of log(1/ρζ)\log(1/\rho_\zeta). The average of log(1/ρζ)\log(1/\rho_\zeta) over all polynomials ff with dd roots in the unit disk is O(d){\mathcal{O}}({d}). This algorithm readily generalizes to finding all roots of a polynomial (without deflation); doing so increases the complexity by a factor of at most dd.Comment: 44 pages, 12 figure

    Holomorphic embeddings of planar domains into C 2

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46245/1/208_2005_Article_BF01461006.pd

    A separator theorem for string graphs and its applications

    Get PDF
    A string graph is the intersection graph of a collection of continuous arcs in the plane. We show that any string graph with in edges can be separated into two parts of roughly equal size by the removal of O(m(3/4)root log m) vertices. This result is then used to deduce that every string graph with n vertices and no complete bipartite subgraph K-t,K-t has at most c(t)n edges, where c(t) is a constant depending only on t. Another application shows that locally tree-like string graphs are globally tree-like: for any epsilon > 0, there is an integer g(epsilon) such that every string graph with n vertices and girth at least g(epsilon) has at most (1 + epsilon)n edges. Furthermore, the number of such labelled graphs is at most (1 + epsilon)(n) T(n), where T(n) = n(n-2) is the number of labelled trees on n vertices
    corecore