143 research outputs found
Magnetic states in multiply-connected flat nano-elements
Flat magnetic nano-elements are an essential component of current and future
spintronic devices. By shaping an element it is possible to select and
stabilize chosen metastable magnetic states, control its magnetization
dynamics. Here, using a recent significant development in mathematics of
conformal mapping, complex variable based approach to the description of
magnetic states in planar nano-elements is extended to the case when elements
are multiply-connected (that is, contain holes or magnetic anti-dots). We show
that presence of holes implies a certain restriction on the set of magnetic
states of nano-element.Comment: 5 pages, 7 figure
The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings
Many well-known graph drawing techniques, including force directed drawings,
spectral graph layouts, multidimensional scaling, and circle packings, have
algebraic formulations. However, practical methods for producing such drawings
ubiquitously use iterative numerical approximations rather than constructing
and then solving algebraic expressions representing their exact solutions. To
explain this phenomenon, we use Galois theory to show that many variants of
these problems have solutions that cannot be expressed by nested radicals or
nested roots of low-degree polynomials. Hence, such solutions cannot be
computed exactly even in extended computational models that include such
operations.Comment: Graph Drawing 201
Pixel and Voxel Representations of Graphs
We study contact representations for graphs, which we call pixel
representations in 2D and voxel representations in 3D. Our representations are
based on the unit square grid whose cells we call pixels in 2D and voxels in
3D. Two pixels are adjacent if they share an edge, two voxels if they share a
face. We call a connected set of pixels or voxels a blob. Given a graph, we
represent its vertices by disjoint blobs such that two blobs contain adjacent
pixels or voxels if and only if the corresponding vertices are adjacent. We are
interested in the size of a representation, which is the number of pixels or
voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for -outerplanar graphs with vertices, pixels are
always sufficient and sometimes necessary. In particular, outerplanar graphs
can be represented with a linear number of pixels, whereas general planar
graphs sometimes need a quadratic number. In 3D, voxels are
always sufficient and sometimes necessary for any -vertex graph. We improve
this bound to for graphs of treewidth and to
for graphs of genus . In particular, planar graphs
admit representations with voxels
Desingularization of vortices for the Euler equation
We study the existence of stationary classical solutions of the
incompressible Euler equation in the plane that approximate singular
stationnary solutions of this equation. The construction is performed by
studying the asymptotics of equation -\eps^2 \Delta
u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet
boundary conditions and a given function. We also study the
desingularization of pairs of vortices by minimal energy nodal solutions and
the desingularization of rotating vortices.Comment: 40 page
Geometry of Polynomials and Root-Finding via Path-Lifting
Using the interplay between topological, combinatorial, and geometric
properties of polynomials and analytic results (primarily the covering
structure and distortion estimates), we analyze a path-lifting method for
finding approximate zeros, similar to those studied by Smale, Shub, Kim, and
others. Given any polynomial, this simple algorithm always converges to a root,
except on a finite set of initial points lying on a circle of a given radius.
Specifically, the algorithm we analyze consists of iterating where the form a decreasing sequence of
real numbers and is chosen on a circle containing all the roots. We show
that the number of iterates required to locate an approximate zero of a
polynomial depends only on (where is
the radius of convergence of the branch of taking to a root
) and the logarithm of the angle between and certain critical
values. Previous complexity results for related algorithms depend linearly on
the reciprocals of these angles. Note that the complexity of the algorithm does
not depend directly on the degree of , but only on the geometry of the
critical values.
Furthermore, for any polynomial with distinct roots, the average number
of steps required over all starting points taken on a circle containing all the
roots is bounded by a constant times the average of . The
average of over all polynomials with roots in the
unit disk is . This algorithm readily generalizes to
finding all roots of a polynomial (without deflation); doing so increases the
complexity by a factor of at most .Comment: 44 pages, 12 figure
Holomorphic embeddings of planar domains into C 2
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46245/1/208_2005_Article_BF01461006.pd
A separator theorem for string graphs and its applications
A string graph is the intersection graph of a collection of continuous arcs in the plane. We show that any string graph with in edges can be separated into two parts of roughly equal size by the removal of O(m(3/4)root log m) vertices. This result is then used to deduce that every string graph with n vertices and no complete bipartite subgraph K-t,K-t has at most c(t)n edges, where c(t) is a constant depending only on t. Another application shows that locally tree-like string graphs are globally tree-like: for any epsilon > 0, there is an integer g(epsilon) such that every string graph with n vertices and girth at least g(epsilon) has at most (1 + epsilon)n edges. Furthermore, the number of such labelled graphs is at most (1 + epsilon)(n) T(n), where T(n) = n(n-2) is the number of labelled trees on n vertices
- …