32 research outputs found

    High-throughput measurement of fibroblast rhythms reveals genetic heritability of circadian phenotypes in diversity outbred mice and their founder strains.

    Get PDF
    Circadian variability is driven by genetics and Diversity Outbred (DO) mice is a powerful tool for examining the genetics of complex traits because their high genetic and phenotypic diversity compared to conventional mouse crosses. The DO population combines the genetic diversity of eight founder strains including five common inbred and three wild-derived strains. In DO mice and their founders, we established a high-throughput system to measure cellular rhythms using in vitro preparations of skin fibroblasts. Among the founders, we observed strong heritability for rhythm period, robustness, phase and amplitude. We also found significant sex and strain differences for these rhythms. Extreme differences in period for molecular and behavioral rhythms were found between the inbred A/J strain and the wild-derived CAST/EiJ strain, where A/J had the longest period and CAST/EiJ had the shortest. In addition, we measured cellular rhythms in 329 DO mice, which displayed far greater phenotypic variability than the founders-80% of founders compared to only 25% of DO mice had periods of ~ 24 h. Collectively, our findings demonstrate that genetic diversity contributes to phenotypic variability in circadian rhythms, and high-throughput characterization of fibroblast rhythms in DO mice is a tractable system for examining the genetics of circadian traits

    Genetic and Morphological Features of Human iPSC-Derived Neurons with Chromosome 15q11.2 (BP1-BP2) Deletions

    Get PDF
    Producción CientíficaBackground: Copy number variation on chromosome 15q11.2 (BP1-BP2) causes deletion of CYFIP1, NIPA1, NIPA2 and TUBGCP5; it also affects brain structure and elevates risk for several neurodevelopmental disorders that are associated with dendritic spine abnormalities. In rodents, altered cyfip1 expression changes dendritic spine morphology, motivating analyses of human neuronal cells derived from iPSCs (iPSC-neurons). Methods: iPSCs were generated from a mother and her offspring, both carrying the 15q11.2 (BP1-BP2) deletion, and a non-deletion control. Gene expression in the deletion region was estimated using quantitative real-time PCR assays. Neural progenitor cells (NPCs) and iPSC-neurons were characterized using immunocytochemistry. Results: CYFIP1, NIPA1, NIPA2 and TUBGCP5 gene expression was lower in iPSCs, NPCs and iPSC-neurons from the mother and her offspring in relation to control cells. CYFIP1 and PSD95 protein levels were lower in iPSC-neurons derived from the CNV bearing individuals using Western blot analysis. At 10 weeks post-differentiation, iPSC-neurons appeared to show dendritic spines and qualitative analysis suggested that dendritic morphology was altered in 15q11.2 deletion subjects compared with control cells. Conclusions: The 15q11.2 (BP1-BP2) deletion is associated with reduced expression of four genes in iPSC-derived neuronal cells; it may also be associated altered iPSC-neuron dendritic morphology

    Fine-mapping reveals novel alternative splicing of the dopamine transporter

    Get PDF
    Center for Human Genetic Research, Massachusetts General Hospital and Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts.Graduate Program in Biology and Biomedical Science, Yale University, New Haven, Connecticut.The dopamine transporter gene (, ) has been implicated in the pathogenesis of numerous psychiatric and neurodevelopmental disorders, including schizophrenia (SZ). We previously detected association between SZ and intronic variants that replicated in two independent Caucasian samples, but had no obvious function. In follow-up analyses, we sequenced the coding and intronic regions of to identify complete linkage disequilibrium patterns of common variations. We genotyped 78 polymorphisms, narrowing the potentially causal region to two correlated clusters of associated SNPs localized predominantly to introns 3 and 4. Our computational analysis of these intronic regions predicted a novel cassette exon within intron 3, designated E3b, which is conserved among primates. We confirmed alternative splicing of E3b in post-mortem human substantia nigra (SN). As E3b introduces multiple in-frame stop codons, the open reading frame is truncated and the spliced product may undergo nonsense mediated decay. Thus, factors that increase E3b splicing could reduce the amount of unspliced product available for translation. Observations consistent with this prediction were made using cellular assays and in post-mortem human SN. In mini-gene constructs, the extent of splicing is also influenced by at least two common haplotypes, so the alternative splicing was evaluated in relation to SZ risk. Meta-analyses across genome-wide association studies did not support the initial associations and further post-mortem studies did not suggest case-control differences in splicing. These studies do not provide a compelling link to schizophrenia. However, the impact of the alternative splicing on other neuropsychiatric disorders should be investigated. © 2010 Wiley-Liss, Inc

    Apoptotic Engulfment Pathway and Schizophrenia

    Get PDF
    Background: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. Methodology/Principal Findings: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. Conclusions/Significance: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease. © 2009 Chen et al

    Linkage Disequilibrium Patterns and Functional Analysis of RGS4 Polymorphisms in Relation to Schizophrenia

    No full text
    The regulator of G-protein signaling 4 (RGS4, chromosome 1q23.3) plays a critical role in G-protein function. Four common single-nucleotide polymorphisms (SNPs) localized between the 5′ upstream sequence and the first intron, as well as 2 haplotypes derived from these SNPs may confer liability to schizophrenia (SZ). However, the pattern of associations varies among samples. To help clarify the putative associations, we report the following analyses: (1) a comprehensive catalog of common polymorphisms, (2) linkage disequilibrium (LD) and association analyses using these SNPs, and (3) functional analysis based on dual-luciferase promoter assays. We identified 62 SNPs from a 20-kb genomic region spanning RGS4, of which 26 are common polymorphisms with a minor allele frequency (MAF) of >5%. LD analysis suggested 5 clusters of SNPs (r2 > .8). Association analyses using the novel SNPs were consistent with the prior reports, but further localization was constrained by significant LD across the region. The 2 haplotypes reported to confer liability to SZ had significant promoter activity compared with promoterless constructs, suggesting a functional role for both haplotypes. Further analyses of promoter sequences are warranted to understand transcriptional regulation at RGS4. This information will be useful for further analysis of samples in which genetic association of RGS4 polymorphisms with SZ has been reported

    Characterization of neural mechanotransduction response in human traumatic brain injury organoid model

    No full text
    Abstract The ability to model physiological systems through 3D neural in-vitro systems may enable new treatments for various diseases while lowering the need for challenging animal and human testing. Creating such an environment, and even more impactful, one that mimics human brain tissue under mechanical stimulation, would be extremely useful to study a range of human-specific biological processes and conditions related to brain trauma. One approach is to use human cerebral organoids (hCOs) in-vitro models. hCOs recreate key cytoarchitectural features of the human brain, distinguishing themselves from more traditional 2D cultures and organ-on-a-chip models, as well as in-vivo animal models. Here, we propose a novel approach to emulate mild and moderate traumatic brain injury (TBI) using hCOs that undergo strain rates indicative of TBI. We subjected the hCOs to mild (2 s −1^{-1} - 1 ) and moderate (14 s −1^{-1} - 1 ) loading conditions, examined the mechanotransduction response, and investigated downstream genomic effects and regulatory pathways. The revealed pathways of note were cell death and metabolic and biosynthetic pathways implicating genes such as CARD9, ENO1, and FOXP3, respectively. Additionally, we show a steeper ascent in calcium signaling as we imposed higher loading conditions on the organoids. The elucidation of neural response to mechanical stimulation in reliable human cerebral organoid models gives insights into a better understanding of TBI in humans
    corecore