44 research outputs found

    Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays

    Get PDF
    We present a consistent analysis of linear spectroscopy for arrays of nearest neighbor dipole-coupled two-level molecules that reveals distinct signatures of weak and strong coupling regimes separated for infinite size arrays by a quantum critical point. In the weak coupling regime, the ground state of the molecular array is disordered, but in the strong coupling regime it has (anti)ferroelectric ordering. We show that multiple molecular excitations (odd/even in weak/strong coupling regime) can be accessed directly from the ground state. We analyze the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced superradiant behavior in both ordered and disordered phases. As the coupling increases, the single excitation oscillator strength rapidly exceeds the well known Heitler-London value. In the strong coupling regime we show the existence of a unique spectral transition with excitation energy that can be tuned by varying the system size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size, we find a novel, singular spectroscopic signature of the quantum phase transition between disordered and ordered ground states. We outline how arrays of ultra cold dipolar molecules trapped in an optical lattice can be used to access the strong coupling regime and observe the anomalous superradiant effects associated with this regime.Comment: 12 pages, 7 figures main tex

    Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment

    Get PDF
    We present molecular mechanics {and spectroscopic} calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties, and therefore the optical properties of the TMV-templated chromophore assembly, are highly dependent on the choice of chromophores and protein site to which they are bound. We used the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid since the distance between chromophores can be very small. We found that using the geometries from the conformational search is necessary to reproduce the features of the experimental spectral peaks

    Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts

    Get PDF
    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

    Coherent and diffusive time scales for exciton dissociation in bulk heterojunction photovoltaic cells

    No full text
    We study the dynamics of charge separation in bulk heterojunction organic photovoltaic systems in light of recent experimental observations that this process is characterized by multiple time scales in the range of 10 fs to 100 ps. Coherent evolution of the excitonic state has been suggested to dominate the early stages of the charge separation process and diffusion of localized excitons to be dominant at longer times. Both of these processes obviously depend on the system morphology, in particular on the grain sizes of the donor and acceptor phases. Here we analyze these mechanisms and their characteristic time scales, aiming to verify the consistency of the proposed mechanisms with the experimentally observed time scales of charge separation. We suggest that the coherent mechanism that dominates the early stage of charge separation involves delocalized excitons. These excitons are formed by optical excitation of clusters of strongly interacting donor sites, and the charge separation rate is determined by the probability that such sites lie at the donor-acceptor interface. The (relatively) slow diffusive rate is estimated from the mean first passage time for a diffusing exciton to reach the donor grain surface. Our estimates, based on available exciton diffusion rates and morphology data, are consistent with experimental observations. (Figure Presented)

    A semiclassical approach to Coulomb scattering of conduction electrons on ionized impurities in nondegenerate semiconductors

    No full text
    In the proposed model of mobility, the time of electron–ion interaction equals the time taken by the conduction electron to pass a spherical region, corresponding to one impurity ion in crystal, and the minimum scattering angle is determined after Conwell–Weisskopf. We consider the acts of electron scattering on ions as independent and incompatible events. It is shown in the approximation of quasimomentum relaxation time, that for nondegenerate semiconductors, the mobility μ_i, limited by the elastic scattering by impurity ions with the concentration N_i, is proportional to T/N_i^2/3; the Hall factor equals 1.4. The calculated dependences of the mobility of the majority charge carriers upon their concentration for different temperatures T agree well with known experimental data. It is shown, that the Brooks–Herring formula μ_BH ∝ T^3/2/N_i gives overestimated values of mobility. Comparison of the calculations of mobility in degenerate semiconductors with experimental data also yields μ_i < μ_BH

    Chemically Gated Quantum-Interference-Based Molecular Transistor

    No full text
    This Letter proposes a realistic design of a single-molecule quantum-interference-based transistor. The transistor consists of a cross-conjugated donor–bridge–acceptor molecule and is chemically gated by a functional group that can be charged. Numerical simulations indicate that the device properties can be tuned to desired specifications by the choice of its constituting functional groups. The transistor does not require external contacts to control its operation. However, it can be chemically functionalized for easy integration into molecular electonic circuits, especially because its operation does not involve any conformational changes in the molecule. The upper operational frequency limit of the proposed device is found to be in the terahertz range
    corecore