49 research outputs found

    Разработка легкого коммерческого электромобиля

    Get PDF
    The paper describes the process and results of the development of the light commercial electric vehicle. In order to ensure maximum energy efficiency of the developed vehicle the key parameters of the original electric motor. The article also presents the results of power electronic thermal calculation. For the mathematical model of the vehicle, the driving cycle parameters of the electric platform were determined in accordance with UNECE Regulations No 83, 84. The driving cycle was characterized by four successive urban and suburban cycles. The mathematical model also takes into account the time phases of the cycle, which include idling, vehicle idling, acceleration, constant speed movement, deceleration, etc. The model of the electric part of the vehicle was developed using MatLab-Simulink (SimPowerSystems library) in addition to the mechanical part of the electric car. The electric part included the asynchronous electric motor, the motor control system and the inverter. This model at the output allows to obtain such characteristics of the electric motor as currents, flows and voltages of the stator and rotor in a fixed and rotating coordinate systems, electromagnetic moment, angular speed of rotation of the motor shaft. The developed model allowed to calculate and evaluate the performance parameters of the electric vehicle. Technical solutions of the electric vehicle design were verified by conducting strength calculations. In conclusion, the results of field tests of a commercial electric vehicle are presented.В статье описаны процесс и результаты создания легкого коммерческого электромобиля. С целью обеспечения максимальной энергоэффективности разрабатываемого транспортного средства определены основные параметры оригинального электродвигателя. Представлены результаты теплового расчета силовой электроники. Для математической модели транспортного средства определены параметры ездового цикла электрической платформы в соответствии с Правилами № 83, 84 ЕЭК ООН. Цикл движения характеризовался четырьмя последовательными циклами городского и пригородного режимов движения. Математическая модель также учитывает временные фазы цикла, которые включают холостой ход транспортного средства, ускорение, движение с постоянной скоростью, замедление и т. д. Модель электрической части транспортного средства разработана с использованием MatLab-Simulink (библиотека SimPowerSystems) в дополнение к механической части электромобиля. Электрическая часть включала асинхронный электродвигатель, систему управления двигателем и инвертор. Данная модель на выходе позволяет получить такие характеристики электродвигателя, как токи, поведение магнитного поля, напряжения статора и ротора в неподвижной и вращающейся системах координат, электромагнитный момент, угловая скорость вращения вала двигателя. Разработанная модель позволила рассчитать и оценить параметры производительности электромобиля. Технические решения конструкции электромобиля были проверены на прочность путем расчетов. Представлены результаты полевых испытаний коммерческого электромобиля

    Features in constructing a certificate of strength of extraterrestrial material by the example of the Chelyabinsk meteorite

    Get PDF
    © 2017, Pleiades Publishing, Ltd. The mechanical properties of various components of the Chelyabinsk meteorite are studied. A measurement technique allowing one to obtain a strength certificate of the material by a minimum necessary number of samples with allowance for defectiveness is developed. Universal expressions for the chondritic component and impact melting have been obtained. The expressions allow one to make general estimates of the strength boundaries for LL type meteorites

    СИНТЕЗ КВАЗИОПТИМАЛЬНОГО КОНТУРА ТЕЛЕУПРАВЛЯЕМОГО БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ИНЕРЦИОННОМ ИЗМЕРИТЕЛЕ

    Get PDF
    The problem of synthesis of a quasioptimal contour of the long-distance drone’s command and control considering the inertia of the target coordinate unit is solved. The mean of the compensation of the inertia measuring device is offered. The analysis of the distance influence on the parameters of the long-distance drone’s command and control contour before the contact of the drone with the target is carried out.Решена задача синтеза квазиоптимального контура телеуправляемого беспилотного летательного аппарата с учетом инерционности координатного блока цели. Предложен способ компенсации инерционности измерительного устройства. Проведен анализ зависимости параметров контура телеуправления при различных дальностях до точки встречи беспилотного летательного аппарата с целью

    ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ПРИ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ПРОЦЕССА ОБРАБОТКИ

    Get PDF
    The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown.Пространственное распределение интенсивности излучения в различных установках лазерного излучения непрерывного действия зависит от многих факторов, в первую очередь от конструктивных особенностей установок. Для повышения точности описания распределения интенсивности многомодового лазерного излучения предлагается экспериментально-теоретическая модель, в основу которой положено построение сдвигового представления экспериментального распределения интенсивности лазерного излучения с любой наперед заданной степенью точности, в виде суперпозиции базисных функций. Данная модель обеспечивает ошибку аппроксимации всего 2,2 % по сравнению с 24,6 % и 61 % соответственно для равномерной и гауссовской аппроксимаций. Использование представленной модели позволит более точно учесть особенности взаимодействия излучения с обрабатываемой поверхности, повысить точность результатов расчета температурного поля при математическом моделировании процесса лазерной обработки. Представлены методика экспериментального исследования распределения интенсивности лазерного излучения для конкретного источника и математический аппарат для вычисления параметров распределения по пятну нагрева интенсивности лазерного излучения в зависимости от расстояния в радиальном направлении

    THE FEATURES OF LASER EMISSION ENERGY DISTRIBUTION AT MATHEMATIC MODELING OF WORKING PROCESS

    No full text
    The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown

    THE SYNTHESIS OF QUASIOPTIMAL CONTOUR OF THE LONG-DISTANCE DRONE’S COMMAND AND CONTROL WITH THE INERTIA MEASURING DEVICE

    No full text
    The problem of synthesis of a quasioptimal contour of the long-distance drone’s command and control considering the inertia of the target coordinate unit is solved. The mean of the compensation of the inertia measuring device is offered. The analysis of the distance influence on the parameters of the long-distance drone’s command and control contour before the contact of the drone with the target is carried out

    Разработка легкого коммерческого электромобиля

    Get PDF
    The paper describes the process and results of the development of the light commercial electric vehicle. In order to ensure maximum energy efficiency of the developed vehicle the key parameters of the original electric motor. The article also presents the results of power electronic thermal calculation. For the mathematical model of the vehicle, the driving cycle parameters of the electric platform were determined in accordance with UNECE Regulations No 83, 84. The driving cycle was characterized by four successive urban and suburban cycles. The mathematical model also takes into account the time phases of the cycle, which include idling, vehicle idling, acceleration, constant speed movement, deceleration, etc. The model of the electric part of the vehicle was developed using MatLab-Simulink (SimPowerSystems library) in addition to the mechanical part of the electric car. The electric part included the asynchronous electric motor, the motor control system and the inverter. This model at the output allows to obtain such characteristics of the electric motor as currents, flows and voltages of the stator and rotor in a fixed and rotating coordinate systems, electromagnetic moment, angular speed of rotation of the motor shaft. The developed model allowed to calculate and evaluate the performance parameters of the electric vehicle. Technical solutions of the electric vehicle design were verified by conducting strength calculations. In conclusion, the results of field tests of a commercial electric vehicle are presented
    corecore