12,980 research outputs found

    Non-equilibrium dynamics in the dual-wavelength operation of Vertical external-cavity surface-emitting lasers

    Full text link
    Microscopic many-body theory coupled to Maxwell's equation is used to investigate dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor lasers is associated with characteristic non-equilibrium carrier dynamics which causes significant deformations of the quasi-equilibrium gain and carrier inversion. Extended numerical simulations are employed to efficiently investigate the parameter space to identify the regime for two-wavelength operation. Using a frequency selective intracavity etalon, two families of modes are stabilized with dynamical interchange of the strongest emission peaks. For this operation mode, anti-correlated intensity noise is observed in agreement with the experiment. A method using effective frequency selective filtering is suggested for stabilization genuine dual-wavelength output.Comment: 15 pages, 7 figure

    Mode-locking in vertical external-cavity surface-emitting lasers with type-II quantum-well configurations

    Full text link
    A microscopic study of mode-locked pulse generation is presented for vertical external-cavity surface-emitting lasers utilizing type-II quantum well configurations. The coupled Maxwell semiconductor Bloch equations are solved numerically where the type-II carrier replenishment is modeled via suitably chosen reservoirs. Conditions for stable mode-locked pulses are identified allowing for pulses in the \unit[100]{fs} range. Design strategies for type-II configurations are proposed that avoid potentially unstable pulse dynamics.Comment: Main paper with supplementary material

    Cherenkov Radiation from Jets in Heavy-ion Collisions

    Full text link
    The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.Comment: 4 pages, 5 figures, revte

    Theory of the Franck-Condon blockade regime

    Full text link
    Strong coupling of electronic and vibrational degrees of freedom entails a low-bias suppression of the current through single-molecule devices, termed Franck-Condon blockade. In the limit of slow vibrational relaxation, transport in the Franck-Condon-blockade regime proceeds via avalanches of large numbers of electrons, which are interrupted by long waiting times without electron transfer. The avalanches consist of smaller avalanches, leading to a self-similar hierarchy which terminates once the number of transferred electrons per avalanche becomes of the order of unity. Experimental signatures of self-similar avalanche transport are strongly enhanced current (shot) noise, as expressed by giant Fano factors, and a power-law noise spectrum. We develop a theory of the Franck-Condon-blockade regime with particular emphasis on effects of electron cotunneling through highly excited vibrational states. As opposed to the exponential suppression of sequential tunneling rates for low-lying vibrational states, cotunneling rates suffer only a power-law suppression. This leads to a regime where cotunneling dominates the current for any gate voltage. Including cotunneling within a rate-equation approach to transport, we find that both the Franck-Condon blockade and self-similar avalanche transport remain intact in this regime. We predict that cotunneling leads to absorption-induced vibrational sidebands in the Coulomb-blockaded regime as well as intrinsic telegraph noise near the charge degeneracy point.Comment: 20 pages, 10 figures; minor changes, version published in Phys. Rev.

    Vibrational absorption sidebands in the Coulomb blockade regime of single-molecule transistors

    Full text link
    Current-driven vibrational non-equilibrium induces vibrational sidebands in single-molecule transistors which arise from tunneling processes accompanied by absorption of vibrational quanta. Unlike conventional sidebands, these absorption sidebands occur in a regime where the current is nominally Coulomb blockaded. Here, we develop a detailed and analytical theory of absorption sidebands, including current-voltage characteristics as well as shot noise. We discuss the relation of our predictions to recent experiments.Comment: 7 pages, 6 figures; revised discussion of relation to experimen

    On piezophase effects in mechanically loaded atomic scale Josephson junctions

    Full text link
    The response of an intrinsic Josephson contact to externally applied stress is considered within the framework of the dislocation-induced atomic scale Josephson effect. The predicted quasi-periodic (Fraunhofer-like)stress-strain and stress-current patterns should manifest themselves for experimentally accessible values of applied stresses in intrinsically defected (e.g.,twinned) crystals.Comment: REVTEX (epsf style), 2 EPS figure

    Gravitino Dark Matter and Neutrino Masses in Partial Split Supersymmetry

    Full text link
    Partial Split Supersymmetry with bilinear R-parity violation allows to reproduce all neutrino mass and mixing parameters. The viable dark matter candidate in this model is the gravitino. We study the hypothesis that both possibilities are true: Partial Split Supersymmetry explains neutrino physics and that dark matter is actually composed of gravitinos. Since the gravitino has a small but non-zero decay probability, its decay products could be observed in astrophysical experiments. Combining bounds from astrophysical photon spectra with the bounds coming from the mass matrix in the neutrino sector we derive a stringent upper limit for the allowed gravitino mass. This mass limit is in good agreement with the results of direct dark matter searches.Comment: 22 pages, 3 figure

    Low Mass Dilepton Rate from the Deconfined Phase

    Full text link
    We discuss low mass dilepton rates (1\le 1 GeV) from the deconfined phase of QCD using both perturbative and non-perturbative models and compare with those from lattice gauge theory and in-medium hadron gas. Our analysis suggests that the rate at very low invariant mass (M200 M\le 200 MeV) using the nonperturbative gluon condensate in a semiempirical way within the Green function dominates over the Born-rate and independent of any uncertainty associated with the choice of the strong coupling in perturbation theory. On the other hand the rate from ρq\rho-q interaction in the deconfined phase is important between 200 MeV M1GeVasitisalmostofsameorderoftheBornrateaswellasinmediumhadrongasrate.Alsothehigherorderperturbativerate,leavingasideitsvariousuncertainties,fromHTLapproximationbecomesreliableat\le M \le 1 GeV as it is almost of same order of the Born-rate as well as in-medium hadron gas rate. Also the higher order perturbative rate, leaving aside its various uncertainties, from HTL approximation becomes reliable at M\ge 200MeVandalsobecomescomparablewiththeBornrateandthelatticeratefor MeV and also becomes comparable with the Born-rate and the lattice-rate for M\ge 500$ MeV, constraining on the broad resonance structures in the dilepton rate at large invariant mass. We also discuss the lattice constraints on the low mass dilepton rate. Furthermore, we discuss a more realistic way to advocate the quark-hadron duality hypothesis based on the dilepton rates from QGP and hadron gas than it is done in the literature.Comment: 24 pages, 9 figures; Discussion added, Accepted in Phys. Rev.

    Multiplicity Fluctuations in the Pion-Fireball Gas

    Full text link
    The pion number fluctuations are considered in the system of pions and large mass fireballs decaying finally into pions. A formulation which gives an extension of the model of independent sources is suggested. The grand canonical and micro-canonical ensemble formulations of the pion-fireball gas are considered as particular examples.Comment: 13 pages, 4 figure

    Evidence for an Excited Hyperon State in pp -> p K^+ Y^{0*}

    Full text link
    Indications for the production of a neutral excited hyperon in the reaction pp -> p K^+ Y^{0*} are observed in an experiment performed with the ANKE spectrometer at COSY-J\"ulich at a beam momentum of 3.65 GeV/c. Two final states were investigated simultaneously, viz. Y^{0*} -> pi^+X^- and pi^-X^+, and consistent results were obtained in spite of the quite different experimental conditions. The parameters of the hyperon state are M(Y^{0*})= (1480 +/- 15) MeV/c^2 and Gamma(Y^{0*})= (60 +/- 15) MeV/c^2. The production cross section is of the order of few hundred nanobarns. Since the isospin of the Y^{0*} has not been determined here, it could either be an observation of the Sigma(1480), a one-star resonance of the PDG tables, or alternatively a Lambda hyperon. Relativistic quark models for the baryon spectrum do not predict any excited hyperon in this mass range and so the Y^{0*} may be of exotic nature.Comment: 4 pages, 3 figures, accepted for publication in Phys.Rev.Let
    corecore