4 research outputs found

    Biodiversity for biocatalysis: A review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes

    Get PDF
    Review Article.Natural biodiversity undoubtedly inspires biocatalysis research and innovation. Biotransformations of interest also inspire the search for appropriate biocatalysts in nature. Indeed, natural genetic resources have been found to support the hydrolysis and synthesis of not only common but also unusual synthetic scaffolds. The emerging tool of metagenomics has the advantage of allowing straightforward identification of activity directly applicable as biocatalysis. However, new enzymes must not only have outstanding properties in terms of performance but also other properties superior to those of well-established commercial preparations in order to successfully replace the latter. Esterases (EST) and lipases (LIP) from the α/β-hydrolase fold superfamily are among the enzymes primarily used in biocatalysis. Accordingly, they have been extensively examined with metagenomics. Here we provided an updated (October 2015) overview of sequence and functional data sets of 288 EST–LIP enzymes with validated functions that have been isolated in metagenomes and (mostly partially) characterized. Through sequence, biochemical, and reactivity analyses, we attempted to understand the phenomenon of variability and versatility within this group of enzymes and to implement this knowledge to identify sequences encoding EST–LIP which may be useful for biocatalysis. We found that the diversity of described EST–LIP polypeptides was not dominated by a particular type of protein or highly similar clusters of proteins but rather by diverse nonredundant sequences. Purified EST–LIP exhibited a wide temperature activity range of 10–85 °C, although a preferred bias for a mesophilic temperature range (35–40 °C) was observed. At least 60% of the total characterized metagenomics-derived EST–LIP showed outstanding properties in terms of stability (solvent tolerance) and reactivity (selectivity and substrate profile), which are the features of interest in biocatalysis. We hope that, in the future, the search for and utilization of sequences similar to those already encoded and characterized EST–LIP enzymes from metagenomes may be of interest for promoting unresolved biotransformations in the chemical industry. Some examples are discussed in this review.The authors gratefully acknowledge the financial support provided by the European Community project MAMBA (FP7-KBBE-2008-226977), MAGIC-PAH (FP7-KBBE-2009-245226), ULIXES (FP7-KBBE-2010-266473), MicroB3 (FP7-OCEAN.2011-2-287589), KILL-SPILL (FP7-KBBE-2012-312139) and Royal Society UK-Russia Exchange Grant (IE130218). We thank EU Horizon 2020 Program for the support of the Project INMARE H2020-BG-2014-2634486. This work was further funded by grants BIO2011-25012,PCIN-2014-107 and BIO2014-54494-R from the Spanish Ministry of Economy and Competitiveness. The present investigation was funded by the Spanish Ministry of Economy and Competitiveness, the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the German Federal Ministry of Education and Research (BMBF) within the ERA NET-IB2 program, grant number ERA-IB-14-030. The authors gratefully acknowledge the financial support provided by the European Regional Development Fund (ERDF).Peer reviewe

    Bioprospecting reveals class III ω-transaminases converting bulky ketones and environmentally relevant polyamines

    Get PDF
    Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine

    Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis

    No full text
    Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e., in aqueous rather than organic solvents. Therefore, biocatalysts that withstand organic solvents are urgently needed. Current strategies to identify such enzymes rely on laborious tests carried out by incubation in different organic solvents and determination of residual activity. Here, we describe a simple assay useful for screening large libraries of carboxylic ester hydrolases for resistance and activity in water-miscible organic solvents. We have screened a set of 26 enzymes, most of them identified in this study, with four different water-miscible organic solvents. The triglyceride tributyrin was used as a substrate, and fatty acids released by enzymatic hydrolysis were detected by a pH shift indicated by the indicator dye nitrazine yellow. With this strategy, we succeeded in identifying a novel highly organic-solvent-tolerant esterase from Pseudomonas aestusnigri. In addition, the newly identified enzymes were tested with sterically demanding substrates, which are common in pharmaceutical intermediates, and two enzymes from Alcanivorax borkumensis were identified which outcompeted the gold standard ester hydrolase CalB from Candida antarctic
    corecore