40,649 research outputs found

    Synaptic Transmission: An Information-Theoretic Perspective

    Get PDF
    Here we analyze synaptic transmission from an information-theoretic perspective. We derive closed-form expressions for the lower-bounds on the capacity of a simple model of a cortical synapse under two explicit coding paradigms. Under the ``signal estimation'' paradigm, we assume the signal to be encoded in the mean firing rate of a Poisson neuron. The performance of an optimal linear estimator of the signal then provides a lower bound on the capacity for signal estimation. Under the ``signal detection'' paradigm, the presence or absence of the signal has to be detected. Performance of the optimal spike detector allows us to compute a lower bound on the capacity for signal detection. We find that single synapses (for empirically measured parameter values) transmit information poorly but significant improvement can be achieved with a small amount of redundancy.Comment: 7 pages, 4 figures, NIPS97 proceedings: neuroscience. Originally submitted to the neuro-sys archive which was never publicly announced (was 9809002

    Evaluation of range and distortion tolerance for high Mach number transonic stages

    Get PDF
    Designing transonic compressors for investigating distortion tolerance of high tip speed fan stage

    Experimental evaluation of outer case blowing or bleeding of single stage axial flow compressor. Part 3 - Performance of blowing insert configuration no. 1

    Get PDF
    Experimental evaluation of outer case blowing or bleeding of single stage axial flow compressor, and performance tests using distorted or undistorted inlet flo

    Evaluation of range and distortion tolerance for high Mach number transonic fan stages. Task 2: Performance of a 1500-foot-per-second tip speed transonic fan stage with variable geometry inlet guide vanes and stator

    Get PDF
    A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line

    Computer aided processing using laser measurements

    Get PDF
    The challenge exists of processing the STS and its cargo through KSC facilities in the most timely and cost effective manner possible. To do this a 3-D computer graphics data base was established into which was entered the STS, payloads, and KSC facilities. The facility drawing data are enhanced by laser theodolite measurements into an as-built configuration. Elements of the data base were combined to study orbiter/facility interfaces payload/facility access problems and design/arrangement of various GSE to support processing requirements. With timely analysis/design utilizing the 3-D computer graphics system, costly delays can be avoided. Better methodology can be analyzed to determine procedures for cost avoidance

    Versatile Control System for Automated Single-Molecule Optical Tweezers Investigations

    Get PDF
    We present a versatile control system to automate single-molecule biophysics experiments. This method combines low-level controls into various functional, user-configurable modules, which can be scripted in a domain-specific instruction language. The ease with which the high-level parameters can be changed accelerates the development of a durable experiment for the perishable single-molecule samples. Once the experimental parameters are tuned, the control system can be used to repeatedly manipulate other single molecules in the same way, which is necessary to accumulate the statistics needed to report results from single-molecule studies. This system has been implemented for an optical tweezers instrument for single-molecule manipulations, with real-time point-by-point feedback at a loop rate of 10-20 kHz
    • …
    corecore