33,114 research outputs found
Synaptic Transmission: An Information-Theoretic Perspective
Here we analyze synaptic transmission from an information-theoretic
perspective. We derive closed-form expressions for the lower-bounds on the
capacity of a simple model of a cortical synapse under two explicit coding
paradigms. Under the ``signal estimation'' paradigm, we assume the signal to be
encoded in the mean firing rate of a Poisson neuron. The performance of an
optimal linear estimator of the signal then provides a lower bound on the
capacity for signal estimation. Under the ``signal detection'' paradigm, the
presence or absence of the signal has to be detected. Performance of the
optimal spike detector allows us to compute a lower bound on the capacity for
signal detection. We find that single synapses (for empirically measured
parameter values) transmit information poorly but significant improvement can
be achieved with a small amount of redundancy.Comment: 7 pages, 4 figures, NIPS97 proceedings: neuroscience. Originally
submitted to the neuro-sys archive which was never publicly announced (was
9809002
Analysis And Performance Of A Picosecond Dye Laser Amplifier Chain
Design considerations are discussed for a simple, easy to use and relatively efficient high gain dye laser amplifier chain for CW mode-locked dye lasers. The amplifier boosts the output of a synchronously mode-locked dye laser to obtain ≈005 mj, ≤ 1 psec pulses over a ≈ 400 Å bandwidth. These pulses are suitable for efficient Raman Shifting, frequency mixing and continuum generation to vastly extend the spectral range of the system. Our amplifier is pumped by a frequency doubled Nd:YAG oscillator only, which longitudinally pumps three identical brewster cells with the same flowing dye solution in each. Contrary to popular belief, high small signal gains (≥ 105) are easily attained in a single stage with longitudinal pumping, with better beam homogeneity and easier alignment than transverse pumping. Gain saturation measurements are presented which agree well with calculations. Factors which relax the pump timing sensitivity are examined. The importance of gain saturation for both efficient amplification and for amplitude stability is also discussed. The need for isolated amplifier stages is stressed and optimal amplifier cell areas for a given stage are calculated
Baryon number and strangeness: signals of a deconfined antecedent
The correlation between baryon number and strangeness is used to discern the
nature of the deconfined matter produced at vanishing chemical potential in
high-energy nuclear collisions at the BNL RHIC. Comparisons of results of
various phenomenological models with correlations extracted from lattice QCD
calculations suggest that a quasi-particle picture applies. At finite baryon
densities, such as those encountered at the CERN SPS, it is demonstrated that
the presence of a first-order phase transition and the accompanying development
of spinodal decomposition would significantly enhance the number of strangeness
carriers and the associated fluctuations.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the
Workshop on Correlations and Fluctuations in Relativistic Nuclear collisions,
(MIT, April 21-23,2005
Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions
We investigate the baryonic contributions to the dilepton yield in high
energy heavy ion collisions within the context of a transport model. The
relative contribution of the baryonic and mesonic sources are examined. It is
observed that most dominant among the baryonic channels is the decay of
N*(1520) and mostly confined in the region below the rho peak. In a transport
theory implementation we find the baryonic contribution to the lepton pair
yield to be small.Comment: 11 pages, 8 figure
Advanced indium antimonide monolithic charge coupled infrared imaging arrays
The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials
Observation of a dissipative phase transition in a one-dimensional circuit QED lattice
Condensed matter physics has been driven forward by significant experimental
and theoretical progress in the study and understanding of equilibrium phase
transitions based on symmetry and topology. However, nonequilibrium phase
transitions have remained a challenge, in part due to their complexity in
theoretical descriptions and the additional experimental difficulties in
systematically controlling systems out of equilibrium. Here, we study a
one-dimensional chain of 72 microwave cavities, each coupled to a
superconducting qubit, and coherently drive the system into a nonequilibrium
steady state. We find experimental evidence for a dissipative phase transition
in the system in which the steady state changes dramatically as the mean photon
number is increased. Near the boundary between the two observed phases, the
system demonstrates bistability, with characteristic switching times as long as
60 ms -- far longer than any of the intrinsic rates known for the system. This
experiment demonstrates the power of circuit QED systems for studying
nonequilibrium condensed matter physics and paves the way for future
experiments exploring nonequilbrium physics with many-body quantum optics
Observations on the Overwintering Potential of the Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Southern Minnesota
The striped cucumber beetle, Acalymma vittatum (Fabricius) (Coleoptera: Chrysomelidae), is an important pest of cucurbit crops. However, the overwinter- ing capacity of this pest in temperate regions is poorly understood. In this study, the in-field survival of A. vittatum was examined during three consecutive winters. In addition, the supercooling points of A. vittatum were determined as an index of cold hardiness for adults. During each winter, the survival of adults decreased significantly through time, with no individuals surviving until spring. By comparing the supercooling points and in-field survival of adults to soil temperatures, it appears that winter temperatures in Minnesota are cold enough to induce freezing of the beetles. Moreover, a considerable amount of mortality occurred before minimum monthly soil temperatures dropped below the supercooling point of overwintering individuals, suggesting the occurrence of prefreeze mortality. An improved understanding of the response of A. vittatum to winter temperatures in temperate regions may aid in early season management of this pest
High-frequency effects in the FitzHugh-Nagumo neuron model
The effect of a high-frequency signal on the FitzHugh-Nagumo excitable model
is analyzed. We show that the firing rate is diminished as the ratio of the
high-frequency amplitude to its frequency is increased. Moreover, it is
demonstrated that the excitable character of the system, and consequently the
firing activity, is suppressed for ratios above a given threshold value. In
addition, we show that the vibrational resonance phenomenon turns up for
sufficiently large noise strength values.Comment: 4 pages, 4 figures (to appear in Physical Review E
- …