371 research outputs found

    Metrizability of Clifford topological semigroups

    Full text link
    We prove that a topological Clifford semigroup SS is metrizable if and only if SS is an MM-space and the set E={eS:ee=e}E=\{e\in S:ee=e\} of idempotents of SS is a metrizable GδG_\delta-set in SS. The same metrization criterion holds also for any countably compact Clifford topological semigroup SS.Comment: 4 page

    Screened and Unscreened Phases in Sedimenting Suspensions

    Full text link
    A coarse-grained stochastic hydrodynamical description of velocity and concentration fluctuations in steadily sedimenting suspensions is constructed, and analyzed using self-consistent and renormalization group methods. We find that there exists a dynamical, non-equilibrium phase transition from an "unscreened" phase in which we recover the Caflisch-Luke (R.E. Caflisch and J.H.C. Luke, Phys. Fluids 28, 759 (1985)) divergence of the velocity variance to a "screened" phase where the velocity fluctuations have a finite correlation length growing as ϕ1/3\phi^{-1/3} where ϕ\phi is the particle volume fraction, in agreement with Segr\`e et. al. (Phys. Rev. Lett. 79, 2574 (1997)) and the velocity variance is independent of system size. Detailed predictions are made for the correlation function in both phases and at the transition.Comment: 4 pages, revtex 1 figur

    Rhythmogenic neuronal networks, pacemakers, and k-cores

    Full text link
    Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.Comment: 4+ pages, 4 figures, submitted to Phys. Rev. Let

    Baryon Density Correlations in High Temperature Hadronic Matter

    Full text link
    As part of an ongoing effort to characterize the high temperature phase of QCD, in a numerical simulation using the staggered fermion scheme, we measure the quark baryon density in the vicinity of a fixed test quark at high temperature and compare it with similar measurements at low temperature and at the crossover temperature. We find an extremely weak correlation at high temperature, suggesting that small color singlet clusters are unimportant in the thermal ensemble. We also find that at T=0.75 TcT = 0.75\ T_c the total induced quark number shows a surprisingly large component attributable to baryonic screening. A companion simulation of a simple flux tube model produces similar results and also suggests a plausible phenomenological scenario: As the crossover temperature is approached from below, baryonic states proliferate. Above the crossover temperature the mean size of color singlet clusters grows explosively, resulting in an effective electrostatic deconfinement.Comment: 26 pp, RevTeX, 12 postscript figures, combined in a single shell archive file. (Also available in 13 postscript files by anonymous ftp from einstein.physics.utah.edu, /pub/milc/paper.sh.Z.

    TeV Mini Black Hole Decay at Future Colliders

    Full text link
    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation lead to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of String Theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions.By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3-Brane embedded into an higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and include the presence of D-branes. Furthermore, unification of fundamental interactions at an energy scale many order of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this article we review higher dimensional black hole decay, considering not only the emission of particles according to Hawking mechanism, but also their near horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear experimental signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and Quantum Gra

    A note on the universality of the Hagedorn behavior of pp-wave strings

    Get PDF
    Following on from recent studies of string theory on a one-parameter family of integrable deformations of AdS5×S5AdS_{5}\times S^{5} proposed by Lunin and Maldacena, we carry out a systematic analysis of the high temperature properties of type IIB strings on the associated pp-wave geometries. In particular, through the computation of the thermal partition function and free energy we find that not only does the theory exhibit a Hagedorn transition in both the (J,0,0)(J,0,0) and (J,J,J)(J,J,J) class of pp-waves, but that the Hagedorn temperature is insensitive to the deformation suggesting an interesting universality in the high temperature behaviour of the pp-wave string theory. We comment also on the implications of this universality on the confinement/deconfinement transition in the dual N=1\mathcal{N}=1 Leigh-Strassler deformation of N=4{\cal N}=4 Yang-Mills theory.Comment: 25 pages; fixed minor typo; added reference

    Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.

    Get PDF
    The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism

    Giant Graviton Oscillators

    Full text link
    We study the action of the dilatation operator on restricted Schur polynomials labeled by Young diagrams with p long columns or p long rows. A new version of Schur-Weyl duality provides a powerful approach to the computation and manipulation of the symmetric group operators appearing in the restricted Schur polynomials. Using this new technology, we are able to evaluate the action of the one loop dilatation operator. The result has a direct and natural connection to the Gauss Law constraint for branes with a compact world volume. We find considerable evidence that the dilatation operator reduces to a decoupled set of harmonic oscillators. This strongly suggests that integrability in N=4 super Yang-Mills theory is not just a feature of the planar limit, but extends to other large N but non-planar limits.Comment: 72 page

    Precision exercise medicine: understanding exercise response variability

    Get PDF
    There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability. In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels-a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability531811411153The consensus meeting that led to the writing of this manuscript was held with the financial support of the Pennington Biomedical Research Foundation, the Pennington Biomedical Research Center Division of Education, the LSU Boyd Professorship and the John W. Barton, Sr. Chair in Genetics and Nutrition. No funding and/or honorarium was provided to any member of the writing group for the production of this manuscrip
    corecore