30 research outputs found

    Medfazna reologija: Pregled merilnih tehnik in njen pomen v disperzijah in elekrostatskemu sukanju

    Get PDF
    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area such as electrospinning of nanofibers.Medfazne reološke lastnosti so še dokaj neraziskane. Šele pred kratkim so razvili metode, s katerimi je mogoče z zadostno občutljivostjo in natančnostjo določiti viskoelastične lastnosti medfaze. Medfazna reologija opisuje odnos med deformacijo medfaze in silo, ki to deformacijo povzroči. Zaradi različnih deformacij medfazne plasti (strig in raztezanje, oziroma krčenje) se tudi medfazna reologija deli na strižno in dilatacijsko. Strižne reološke lastnosti medfaze se odražajo v dolgotrajni stabilnosti disperzij, medtem ko sedilatacijske predvsem v kratkotrajni stabilnosti. Poznavanje medfaznih reoloških lastnosti je pomembno v sistemih z velikimi medfaznimi površinami, kot so emulzije in pene ter pri procesih, kjer pride do velikega povečanja medfazne površine, kot je elektrostatsko sukanje nanovlaken

    Nanofibers and their biomedical use

    Get PDF
    The idea of creating replacement for damaged or diseased tissue, which will mimic the physiological conditions and simultaneously promote regeneration by patients\u27 own cells, has been a major challenge in the biomedicine for more than a decade. Therefore, nanofibers are a promising solution to address these challenges. These are solid polymer fibers with nanosized diameter, which show improved properties compared to the materials of larger dimensions or forms and therefore cause different biological responses. On the nanometric level, nanofibers provide a biomimetic environment, on the micrometric scale three-dimensional architecture with the desired surface properties regarding the intended application within the body, while on the macrometric scale mechanical strength and physiological acceptability. In the review, the development of nanofibers as tissue scaffolds, modern wound dressings for chronic wound therapy and drug delivery systems is highlighted. Research substantiates the effectiveness of nanofibers for enhanced tissue regeneration, but ascertains that evidences from clinical studies are currently lacking. Nevertheless, due to the development of nano- and bio-sciences, products on the market can be expected in the near future

    Design and fabrication of magnetically responsive nanocarriers for drug delivery

    Get PDF
    Magnetically-assisted delivery of therapeutic agents to the site of interest, which is referred to as magnetic drug targeting, has proven to be a promising strategy in a number of studies. One of the key advantages over other targeting strategies is the possibility to control remotely the distribution and accumulation of the nanocarriers after parenteral administration. However, preparation of effective and robust magnetically responsive nanocarriers based on superparamagnetic iron oxide nanocrystals (SPIONs) still represents a great scientific challenge, since spatial guidance of individual SPIONs is ineffective despite the presence of high magnetic field gradient. A strategy to overcome this issue is the clustering of SPIONs to achieve sufficient magnetic responsiveness. In this mini-review, we address current and future strategies for the design and fabrication of magnetically responsive nanocarriers based on SPIONs for magnetically-targeted drug delivery, including the underlying physical requirements, the possibility of drug loading, and the control of drug release at the targeted site

    Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly(ethylene oxide) nanofibers

    Full text link
    Lactic acid bacteria can have beneficial health effects and be used for the treatment of various diseases. However, there remains the challenge of encapsulating probiotics into delivery systems with a high viability and encapsulation efficacy. The electrospinning of bacteria is a novel and little-studied method, and further investigation of its promising potential is needed. Here, the morphology, zeta potential, hydrophobicity, average cell mass, and growth characteristics of nine different species of Lactobacillus and one of Lactococcus are characterized. The electrospinning of polymer solutions containing ~10 log colony forming units (CFU)/mL lactic acid bacteria enabled the successful incorporation of all bacterial species tested, from the smallest (0.74 µmLactococcus lactis) to the largest (10.82 µmLactobacillus delbrueckii ssp. bulgaricus), into poly(ethylene oxide) nanofibers with an average diameter of ~100 nm. All of these lactobacilli were viable after incorporation into nanofibers, with 0 to 3 log CFU/mg loss in viability, depending on the species. Viability correlated with the hydrophobicity and extreme length of lactic acid bacteria, whereas a horizonal or vertical electrospinning set-up did not have any role. Therefore, electrospinning represents a promising method for the incorporation of lactic acid bacteria into solid delivery systems, while drying the bacterial dispersion at the same time

    The incorporated drug affects the properties of hydrophilic nanofibers

    No full text
    Hydrophilic nanofibers offer promising potential for the delivery of drugs with diverse characteristics. Yet, the effects of different drugs incorporated into these nanofibers on their properties remain poorly understood. In this study, we systematically explored how model drugs, namely ibuprofen, carvedilol, paracetamol, and metformin (hydrochloride), affect hydrophilic nanofibers composed of polyethylene oxide and poloxamer 188 in a 1:1 weight ratio. Our findings reveal that the drug affects the conductivity and viscosity of the polymer solution for electrospinning, leading to distinct changes in the morphology of electrospun products. Specifically, drugs with low solubility in ethanol, the chosen solvent for polymer solution preparation, led to the formation of continuous nanofibers with uniform diameters. Additionally, the lower solubility of metformin in ethanol resulted in particle appearance on the nanofiber surface. Furthermore, the incorporation of more hydrophilic drugs increased the surface hydrophilicity of nanofiber mats. However, variations in the physicochemical properties of the drugs did not affect the drug loading and drug entrapment efficiency. Our research also shows that drug properties do not notably affect the immediate release of drugs from nanofibers, highlighting the dominant role of the hydrophilic polymers used. This study emphasizes the importance of considering specific drug properties, such as solubility, hydrophilicity, and compatibility with the solvent used for electrospinning, when designing hydrophilic nanofibers for drug delivery. Such considerations are crucial for optimizing the properties of the drug delivery system, which is essential for achieving therapeutic efficacy and safety

    The shape anisotropy of magnetic nanoparticles

    Full text link
    The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro. Although both shapes of nanomaterials reveal biocompatibility, we have found significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation
    corecore