6 research outputs found
The Use of Polyurethane Foam (PUF) Passive Air Samplers in Exposure Studies to PAHs in Swedish Seafarers
The aim of this study was to test the usefulness of polyurethane foam (PUF) passive air samplers as stationary, and, for the first time, as personal samplers for one week’s sampling period of polycyclic aromatic hydrocarbons (PAHs) in occupational air. Routine monitoring of workplace exposure is commonly performed with active sampling. However, active samplers can sometimes be unsuitable; e.g., it is difficult to make time-integrated measurements, longer than one day, and they can be noisy and obstructive. Indoor air quality on ships is an important aspect of the environment which has not been studied extensively on ships. For seafarers, good indoor air quality becomes particularly important as the ship represents both a working and living environment. In this study, measurements were carried out on two occasions on two different ships, at different workplaces, and for various personnel categories. On each ship, measurements were performed before and after a change of the type of fuel that the ships were operating on. We found a considerable wide range of PAHs exposure levels for the various workplaces and personnel categories on the ships. The stationary measurements, sum 32 PAHs, ranged from 33-39,000 ng m−3 and the personal exposure measurements ranged from 61-8,400 ng m−3. The results point to that the content of PAHs in the fuel can affect the indoor air environment on the entire ship. Further, the results demonstrate that the PUF sampler can serve as a simple and usable screening tool for estimating and tracking point sources of PAHs in micro-environments. Moreover, this study contributes to increased knowledge of exposure to and sources of PAHs for seafarers
The Use of Polyurethane Foam (PUF) Passive Air Samplers in Exposure Studies to PAHs in Swedish Seafarers
The aim of this study was to test the usefulness of polyurethane foam (PUF) passive air samplers as stationary, and, for the first time, as personal samplers for one week’s sampling period of polycyclic aromatic hydrocarbons (PAHs) in occupational air. Routine monitoring of workplace exposure is commonly performed with active sampling. However, active samplers can sometimes be unsuitable; e.g., it is difficult to make time-integrated measurements, longer than one day, and they can be noisy and obstructive. Indoor air quality on ships is an important aspect of the environment which has not been studied extensively on ships. For seafarers, good indoor air quality becomes particularly important as the ship represents both a working and living environment. In this study, measurements were carried out on two occasions on two different ships, at different workplaces, and for various personnel categories. On each ship, measurements were performed before and after a change of the type of fuel that the ships were operating on. We found a considerable wide range of PAHs exposure levels for the various workplaces and personnel categories on the ships. The stationary measurements, sum 32 PAHs, ranged from 33-39,000 ng m−3 and the personal exposure measurements ranged from 61-8,400 ng m−3. The results point to that the content of PAHs in the fuel can affect the indoor air environment on the entire ship. Further, the results demonstrate that the PUF sampler can serve as a simple and usable screening tool for estimating and tracking point sources of PAHs in micro-environments. Moreover, this study contributes to increased knowledge of exposure to and sources of PAHs for seafarers
Evaluation of polyurethane foam passive air sampler (PUF) as a tool for occupational PAH measurements
Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1–3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m−3, as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0–20 m3 day−1), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods
An improved method for determining dermal exposure to polycyclic aromatic hydrocarbons
Many workers are occupationally exposed to polycyclic aromatic hydrocarbons (PAHs), which may cause various health problems, and some PAHs are known or suspected carcinogens. PAH exposure is primarily monitored by air sampling, but contamination may also occur through dermal exposure. PAHs adsorbed to the skin can be sampled by tape-stripping, but subsequent extraction of sampling tapes in organic solvent also releases diverse co-eluting substances that are difficult to remove before analysis of the PAHs by gas chromatography/mass spectrometry (GC/MS). The objective of this study was to optimise a procedure for analytical clean-up after extraction of 32 PAHs from tape-strips, by dialysis in organic solvent using semipermeable membranes. With triplicate subsamples, the developed method yields acceptable precision and repeatability for both the 32 PAHs, across the concentration range 10–160 ng per sample, and for a certified reference material (urban dust). The optimized clean-up procedure and GC/MS methodology was used to assess PAHs on skin from the lower part of the ventral side of the wrist and just below the collar bone of three firefighters and seven controls (office workers). Several gaseous and particle-bound PAHs were detected in all samples, including controls. Thus, the optimized procedure using semipermeable membranes for clean-up of tape-strip extracts can be used to assess the dermal exposure of both occupational and general populations to multiple PAHs. The results also show that both gaseous and particle-bound PAHs, including alkylated species, may be present on skin