6 research outputs found

    Structural connectivity-based segmentation of the human entorhinal cortex

    Get PDF
    The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy. Here, we used structural, not functional imaging, namely diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC based on differential connectivity to other brain regions known to project selectively to MEC or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum (dCA1pSub) and lateral orbitofrontal cortex (OFC). Although our DTI segmentation had a larger medial-lateral component than in the previous fMRI studies, our results show that the human MEC and LEC homologues have a border oriented both towards the posterior-anterior and medial-lateral axes, supporting the differentiation between pmEC and alEC

    A combined DTI-fMRI approach for optimizing the delineation of posteromedial vs. anterolateral entorhinal cortex

    Get PDF
    In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subdivision using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions. In this study, we used both DTI and resting-state fMRI in 103 healthy adults to investigate both structural and functional connectivity between the EC and associated cortical brain regions. Differential connectivity with these regions was then used to predict the locations of the human homologues of MEC and LEC. Our results from combining DTI and fMRI support a subdivision into posteromedial (pmEC) and anterolateral (alEC) EC and reveal a discrete border between the pmEC and alEC. Furthermore, the EC subregions obtained by either imaging modality showed similar distinct connectivity patterns: While pmEC showed increased connectivity preferentially with the default mode network, the alEC exhibited increased connectivity with regions in the dorsal attention and salience networks. Optimizing the delineation of the human homologues of MEC and LEC with a combined, cross-validated DTI-fMRI approach allows to define a likely border between the two subdivisions and has implications for both cognitive and translational neuroscience research

    Temporal changes in personal activity intelligence and the risk of incident dementia and dementia related mortality: A prospective cohort study (HUNT)

    Get PDF
    Background: The Personal Activity Intelligence (PAI) translates heart rate during daily activity into a weekly score. Obtaining a weekly PAI score ≥100 is associated with reduced risk of premature morbidity and mortality from cardiovascular diseases. Here, we determined whether changes in PAI score are associated with changes in risk of incident dementia and dementia-related mortality. Methods: We conducted a prospective cohort study of 29,826 healthy individuals. Using data from the Trøndelag Health-Study (HUNT), PAI was estimated 10 years apart (HUNT1 1984-86 and HUNT2 1995-97). Adjusted hazard-ratios (aHR) and 95%-confidence intervals (CI) for incidence of and death from dementia were related to changes in PAI using Cox regression analyses. Findings: During a median follow-up time of 24.5 years (interquartile range [IQR]: 24.1-25.0) for dementia incidence and 23.6 years (IQR: 20.8-24.2) for dementia-related mortality, there were 1998 incident cases and 1033 dementia-related deaths. Individuals who increased their PAI score over time or maintained a high PAI score at both assessments had reduced risk of dementia incidence and dementia-related mortality. Compared with persistently inactive individuals (0 weekly PAI) at both time points, the aHRs for those with a PAI score ≥100 at both occasions were 0.75 (95% CI: 0.58-0.97) for incident dementia, and 0.62 (95% CI: 0.43-0.91) for dementia-related mortality. Using PAI score <100 at both assessments as the reference cohort, those who increased from <100 at HUNT1 to ≥100 at HUNT2 had aHR of 0.83 (95% CI: 0.72-0.96) for incident dementia, and gained 2.8 (95% CI: 1.3-4.2, P<0.0001) dementia-free years. For dementia-related mortality, the corresponding aHR was 0.74 (95% CI: 0.59-0.92) and years of life gained were 2.4 (95% CI: 1.0-3.8, P=0.001). Interpretation: Maintaining a high weekly PAI score and increases in PAI scores over time were associated with a reduced risk of incident dementia and dementia-related mortality. Our findings extend the scientific evidence regarding the protective role of PA for dementia prevention, and suggest that PAI may be a valuable tool in guiding research-based PA recommendations. Funding: The Norwegian Research Council, the Liaison Committee between the Central Norway Regional Health Authority and Norwegian University of Science and Technology (NTNU), Trondheim, Norway.The Norwegian Research Council, the Liaison Committee between the Central Norway Regional Health Authority and Norwegian University of Science and Technology (NTNU), Trondheim, Norway.publishedVersio

    Are the neuroprotective effects of exercise training systemically mediated?

    Get PDF
    To date there is no cure available for dementia, and the field calls for novel therapeutic targets. A rapidly growing body of literature suggests that regular endurance training and high cardiorespiratory fitness attenuate cognitive impairment and reduce dementia risk. Such benefits have recently been linked to systemic neurotrophic factors induced by exercise. These circulating biomolecules may cross the blood-brain barrier and potentially protect against neurodegenerative disorders such as Alzheimer's disease. Identifying exercise-induced systemic neurotrophic factors with beneficial effects on the brain may lead to novel molecular targets for maintaining cognitive function and preventing neurodegeneration. Here we review the recent literature on potential systemic mediators of neuroprotection induced by exercise. We focus on the body of translational research in the field, integrating knowledge from the molecular level, animal models, clinical and epidemiological studies. Taken together, the current literature provides initial evidence that exercise-induced, blood-borne biomolecules, such as BDNF and FNDC5/irisin, may be powerful agents mediating the benefits of exercise on cognitive function and may form the basis for new therapeutic strategies to better prevent and treat dementia
    corecore