636 research outputs found

    Book Talk: How to Save the World in Six (Not So Easy) Steps

    Get PDF
    Join Professor David M. Schizer of Columbia Law School in conversation with Dean Melanie Leslie of Cardozo Law School about Professor Schizer\u27s new book, moderated by Cardozo\u27s Professor Michelle Greenberg-Kobrin.https://larc.cardozo.yu.edu/event-invitations-2024/1003/thumbnail.jp

    How To Save The World In Six (Not So Easy) Steps

    Get PDF
    https://larc.cardozo.yu.edu/flyers-2023-2024/1090/thumbnail.jp

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <1011<10^{-11} emu, enabling us to measure the pressure-driven αϵ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V&lt;sub&gt;H&lt;/sub&gt; segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V&lt;sub&gt;H&lt;/sub&gt; replacements with no addition of untemplated nucleotides at the V&lt;sub&gt;H&lt;/sub&gt;–V&lt;sub&gt;H&lt;/sub&gt; joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V&lt;sub&gt;H&lt;/sub&gt; replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion

    Infinite Lifetime of Underwater Superhydrophobic States

    Full text link
    Submerged superhydrophobic (SHPo) surfaces are well known to transition from the dewetted to wetted state over time. Here, a theoretical model is applied to describe the depletion of trapped air in a simple trench and rearranged to prescribe the conditions for infinite lifetime. By fabricating a microscale trench in a transparent hydrophobic material, we directly observe the air depletion process and verify the model. The study leads to the demonstration of infinite lifetime (&gt;50 days) of air pockets on engineered microstructured surfaces under water for the first time. Environmental fluctuations are identified as the main factor behind the lack of a long-term underwater SHPo state to date

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells

    Get PDF
    Fibroblast growth factor receptor 3 (FGFR3) is one of four high-affinity tyrosine kinase receptors for the FGF family of ligands, frequently associated with growth arrest and induction of differentiation. The extracellular immunoglobulin (IgG)-like domains II and III are responsible for ligand binding; alternative usage of exons IIIb and IIIc of the Ig-like domain III determining the ligand-binding specificity of the receptor. By reverse transcriptase polymerase chain reaction (RT–PCR) a novel FGFR3IIIc variant FGFR3IIIS, expressed in a high proportion of tumours and tumour cell lines but rarely in normal tissues, has been identified. Unlike recently described nonsense transcripts of FGFR3, the coding region of FGFR3IIIS remains in-frame producing a novel protein. The protein product is coexpressed with FGFR3IIIc in the membrane and soluble cell fractions; expression in the soluble fraction is decreased after exposure to bFGF but not aFGF. Knockout of FGFR3IIIS using antisense has a growth-inhibitory effect in vitro, suggesting a dominant-negative function for FGFR3IIIS inhibiting FGFR3-induced growth arrest. In summary, alternative splicing of the FGFR3 Ig-domain III represents a mechanism for the generation of receptor diversity. FGFR3IIIS may regulate FGF and FGFR trafficking and function, possibly contributing to the development of a malignant phenotype
    corecore