311 research outputs found

    Comment on "On the Extraction of Purely Motor EEG Neural Correlates during an Upper Limb Visuomotor Task"

    Full text link
    Bibian et al. show in their recent paper (Bibi\'an et al. 2021) that eye and head movements can affect the EEG-based classification in a reaching motor task. These movements can generate artefacts that can cause an overoptimistic estimation of the classification accuracy. They speculate that such artefacts jeopardise the interpretation of the results from several motor decoding studies including our study (Ofner et al. 2017). While we endorse their warning about artefacts in general, we do have doubts whether their work supports such a statement with respect to our study. We provide in this commentary a more nuanced contextualization of our work presented in Ofner et al. and the type of artefacts investigated in Bibian et al

    A New High-intensity, Low-momentum Muon Beam for the Generation of Low-energy Muons at PSI

    Get PDF
    At the Paul Scherrer Institute (PSI, Villigen, Switzerland) a new high-intensity muon beam line with momentum p < 40MeV/c is currently being commissioned. The beam line is especially designed to serve the needs of the low-energy, polarized positive muon source (LE-μ+) and LE-μ SR spectrometer at PSI. The beam line replaces the existing μ E4 muon decay channel. A large acceptance is accomplished by installing two solenoidal magnetic lenses close to the muon production target E that is hit by the 590-MeV PSI proton beam. The muons are then transported by standard large aperture quadrupoles and bending magnets to the experiment. Several slit systems and an electrostatic separator allow the control of beam shape, momentum spread, and to reduce the background due to beam positrons or electrons. Particle intensities of up to 3.5 × 108 μ+/s and 107 μ−/s are expected at 28MeV/c beam momentum and 1.8mA proton beam current. This will translate into a LE-μ+ rate of 7,000/s being available at the LE-μ SR spectrometer, thus achieving μ+ fluxes, that are comparable to standard μ SR facilitie

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

    Full text link
    We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves state-of-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.Comment: fixed a formatting issue, Eq 7. no change in conten
    corecore