6 research outputs found
The UCSC cancer genomics browser: update 2011
The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) comprises a suite of web-based tools to integrate, visualize and analyze cancer genomics and clinical data. The browser displays whole-genome views of genome-wide experimental measurements for multiple samples alongside their associated clinical information. Multiple data sets can be viewed simultaneously as coordinated āheatmap tracksā to compare across studies or different data modalities. Users can order, filter, aggregate, classify and display data interactively based on any given feature set including clinical features, annotated biological pathways and user-contributed collections of genes. Integrated standard statistical tools provide dynamic quantitative analysis within all available data sets. The browser hosts a growing body of publicly available cancer genomics data from a variety of cancer types, including data generated from the Cancer Genome Atlas project. Multiple consortiums use the browser on confidential prepublication data enabled by private installations. Many new features have been added, including the hgMicroscope tumor image viewer, hgSignature for real-time genomic signature evaluation on any browser track, and āPARADIGMā pathway tracks to display integrative pathway activities. The browser is integrated with the UCSC Genome Browser; thus inheriting and integrating the Genome Browserās rich set of human biology and genetics data that enhances the interpretability of the cancer genomics data
A new trauma frontier: Exploratory pilot study of platelet transcriptomics in trauma patients.
BackgroundThe earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors.MethodsPreresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography.ResultsDifferential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls.ConclusionOur findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level
LaserāSolid Interaction Studies Enabled by the New Capabilities of the iP2 BELLA PW Beamline
The new capabilities of the short focal length, high intensity beamline, named iP2, at the BELLA Center will extend the reach of research in high energy density science, including accessing new regimes of high gradient ion acceleration and their applications. This 1āHz system will provide an on-target peak intensity beyond 1021āW/cm2 with a temporal contrast ratio of <10ā14 that will be enabled by the addition of an on-demand double plasma mirror setup. An overview of the beamline design and the main available diagnostics are presented in this paper as well as a selection of accessible research areas. As a demonstration of the iP2 beamline's capabilities, we present 3D particle-in-cell simulations of ion acceleration in the magnetic vortex acceleration regime. The simulations were performed with pure hydrogen targets and multi-species targets. Proton beams with energy up to 125āMeV and an approximately 12Ā° full angle emission are observed as preplasma scale length and target tilt are varied. The number of accelerated protons is on the order of 109/MeV/sr for energies above 60āMeV
A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline.
Radiotherapy is the current standard of care for more than 50% of all cancer patients. Improvements in radiotherapy (RT) technology have increased tumor targeting and normal tissue sparing. Radiations at ultra-high dose rates required for FLASH-RT effects have sparked interest in potentially providing additional differential therapeutic benefits. We present a new experimental platform that is the first one to deliver petawatt laser-driven proton pulses of 2 MeV energy at 0.2 Hz repetition rate by means of a compact, tunable active plasma lens beamline to biological samples. Cell monolayers grown over a 10 mm diameter field were exposed to clinically relevant proton doses ranging from 7 to 35 Gy at ultra-high instantaneous dose rates of 107 Gy/s. Dose-dependent cell survival measurements of human normal and tumor cells exposed to LD protons showed significantly higher cell survival of normal-cells compared to tumor-cells for total doses of 7 Gy and higher, which was not observed to the same extent for X-ray reference irradiations at clinical dose rates. These findings provide preliminary evidence that compact LD proton sources enable a new and promising platform for investigating the physical, chemical and biological mechanisms underlying the FLASH effect