175 research outputs found

    Advances in Cardiovascular Biomarker Discovery.

    Get PDF
    Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator's expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.This research was funded by Qatar University [Grant QUERG-CMED-2020-3]

    Biomaterials in Traumatic Brain Injury: Perspectives and Challenges

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood–brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies

    Medicago orbicularis Has Antioxidant, Antihemolytic, and Anti-cancerous Activities and Augments Cisplatin-Induced Cytotoxicity in A549 Lung Cancer Cells

    Get PDF
    Cancer is the second leading cause of death, worldwide. Lung cancer is the leading cause of cancer-related mortality. Plant-based therapeutics and herbal medicine have played a vital role in the development of several anti-cancerous agents, and has been used to reduce the severe side effects of chemotherapy as well. Since the anti-lung cancer properties of the plant Medicago. orbicularis are not explored yet, we identified its phytochemical composition and investigated the anti-oxidant, anti-hemolytic, and anti-cancerous properties of extracts of this plant in A549 human lung adenocarcinoma cells. Results show that all parts of M. orbicularis (stems, leaves, and fruits) exhibit remarkable anti-oxidant and hemolytic activities. In addition, all extracts showed a dose-dependent anti-cancerous cytotoxic activity against A549 cells; with fruit extracts being the most potent. This cytotoxic effect could be related, at least partly, to the induction of apoptosis, where M. orbicularis fruit extracts activated Caspase-3 and PARPP-1, and reduced the ratio of anti-apoptotic BCL-2/ pro-apoptotic BAX, thereby promoting cellular death. Furthermore, the use of M. orbicularis, in combination with a conventional chemotherapeutic agent, cisplatin, was assessed. Indeed, combination of cisplatin and M. orbicularis fruit extracts was more cytotoxic and induced more aggregation of A549 cells than either treatment alone. GC-MS analysis and total polyphenol and flavonoid content determination indicated that M. orbicularis is rich in compounds that have anti-cancerous effects. M. orbicularis may be a potential source of anti-cancerous agents to manage progression of lung cancer and its resistance to therapy.This work was supported by the a grant from the Lebanese University to SN and student grants number QUST-1-BRC-2022-315; QUST-1-BRC-2022-316, QUST-1-BRC-2023-836; and QUST-1-BRC-2023-846 to AS. Publication fees APC were covered by Qatar National Library (QNL)

    Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms

    Get PDF
    Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy

    Unveiling a Biomarker Signature of Meningioma: the Need for a Panel of Genomic, Epigenetic, Proteomic, and RNA Biomarkers to Advance Diagnosis and Prognosis

    Get PDF
    Meningiomas are the most prevalent primary intracranial tumors. The majority are benign but can undergo dedifferentiation in grades classified from I to III. Meningiomas tremendous variability in tumor behavior and slow growth rates complicate their diagnosis and treatment. A deeper comprehension of the molecular pathways and cellular microenvironment factors implicated in meningioma survival and pathology is needed. This review summarizes the known genetic and epigenetic aberrations involved in meningioma, with a focus on Neurofibromatosis type 2 (NF2) and non-NF2 mutations. Novel potential biomarkers for meningioma diagnosis and prognosis are also discussed, including epigenetic-, RNA-, and protein-based markers. Finally, the landscape of available meningioma-specific animal models is overviewed. Use of these animal models can enable planning of adjuvant treatment, potentially assisting in preoperative and postoperative decision-making. Discovery of novel biomarkers will allow more precise meningioma grading, including meningioma identification, subtype determination, and prediction of metastasis, recurrence, and response to therapy. Moreover, these biomarkers may be exploited in the development of personalized targeted therapies that can distinguish between the 15 diverse meningioma subtypes.This research is funded by a grant from Morehouse School of Medicine to Firas Kobeissy and a grant from Qatar University to Abdullah A. Shaito

    Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells

    Get PDF
    Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC

    Acute exposure to cigarette smoking followed by myocardial infarction aggravates renal damage in an in vivo mouse model

    Get PDF
    Cigarette smoking (S) is a risk factor for progressive chronic kidney disease, renal dysfunction, and renal failure. In this study, the effect of smoking on kidney function was investigated in a mouse model of myocardial infarction (MI) using 4 groups: control (C), smoking (S), MI, and S+MI. Histological analysis of S+MI group showed alterations in kidney structure including swelling of the proximal convoluted tubules (PCTs), thinning of the epithelial lining, focal loss of the brush border of PCTs, and patchy glomerular retraction. Molecular analysis revealed that nephrin expression was significantly reduced in the S+MI group, whereas sodium-hydrogen exchanger-1 (NHE-1) was significantly increased, suggesting altered glomerular filtration and kidney functions. Moreover, S+MI group, but not S alone, showed a significant increase in the expression of connective tissue growth factor (CTGF) and fibrotic proteins fibronectin (FN) and α-smooth muscle actin (SMA), in comparison to controls, in addition to a significant increase in mRNA levels of IL-6 and TNF-α inflammatory markers. Finally, reactive oxygen species (ROS) production was significantly accentuated in S+MI group concomitant with a significant increase in NOX-4 protein levels. In conclusion, smoking aggravates murine acute renal damage caused by MI at the structural and molecular levels by exacerbating renal dysfunction.This work was supported by grants from the Medical Practice Plan (MPP) at AUB (grant title "Effect of Second Hand Smoking (SHS) on Cardiac and Vascular Smooth Muscle Remodeling: A Targeted and Global Approach." Lead PI: Firas Kobeissy, co-PIs: Asad Zeidan and Ahmad Husari), from Lebanese National Council for Scientific Research (Kazem Zibara), from AUB URB (Firas Kobeissy), and from Lebanese University grant (Kazem Zibara).Scopu

    Impact of exposure to patients with COVID-19 on residents and fellows: An international survey of 1420 trainees

    Get PDF
    Objectives To determine how self-reported level of exposure to patients with novel coronavirus 2019 (COVID-19) affected the perceived safety, training and well-being of residents and fellows. Methods We administered an anonymous, voluntary, web-based survey to a convenience sample of trainees worldwide. The survey was distributed by email and social media posts from April 20th to May 11th, 2020. Respondents were asked to estimate the number of patients with COVID-19 they cared for in March and April 2020 (0, 1-30, 31-60, >60). Survey questions addressed (1) safety and access to personal protective equipment (PPE), (2) training and professional development and (3) well-being and burnout. Results Surveys were completed by 1420 trainees (73% residents, 27% fellows), most commonly from the USA (n=670), China (n=150), Saudi Arabia (n=76) and Taiwan (n=75). Trainees who cared for a greater number of patients with COVID-19 were more likely to report limited access to PPE and COVID-19 testing and more likely to test positive for COVID-19. Compared with trainees who did not take care of patients with COVID-19, those who took care of 1-30 patients (adjusted OR [AOR] 1.80, 95% CI 1.29 to 2.51), 31-60 patients (AOR 3.30, 95% CI 1.86 to 5.88) and >60 patients (AOR 4.03, 95% CI 2.12 to 7.63) were increasingly more likely to report burnout. Trainees were very concerned about the negative effects on training opportunities and professional development irrespective of the number of patients with COVID-19 they cared for. Conclusion Exposure to patients with COVID-19 is significantly associated with higher burnout rates in physician trainees
    • …
    corecore