278 research outputs found

    Optimal Sharing Rules in Repeated Partnerships

    Get PDF
    We study a simple model of repeated partnerships with noisy outcomes. Two partners first choose a sharing rule, under which they start their repeated interaction. We characterize the sharing rule which supports the most efficient equilibrium, and show that it suffices to consider two particular sharing rules. One is an asymmetric sharing rule, which induces only a more productive partner to work. It is optimal for impatient or less productive partners. The other treats them more evenly, and prevails for more productive and patient partners. Those results indicate how technological parameters and patience determine the role of a more productive partner. If the partners become more productive or more patient, the productive partner ceases to be a residual claimant and sacrifices his own share, in order to foster teamwork.

    Behavioral destabilization induced by the selective serotonin reuptake inhibitor fluoxetine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat mood and anxiety disorders. However, neuronal bases for both beneficial and adverse effects of SSRIs remain poorly understood. We have recently shown that the SSRI fluoxetine can reverse the state of maturation of hippocampal granule cells in adult mice. The granule cell "dematuration" is induced in a large population of granule cells, and greatly changes functional and physiological properties of these cells. Here we show that this unique form of neuronal plasticity is correlated with a distinct change in behavior of mice.</p> <p>Results</p> <p>We chronically treated adult male mice with fluoxetine, and examined its effect on several forms of behavior of mice. During fluoxetine treatments, mice showed a marked increase in day-to-day fluctuations of home cage activity levels that was characterized by occasional switching between hypoactivity and hyperactivity within a few days. This destabilized cage activity was accompanied by increased anxiety-related behaviors and could be observed up to 4 weeks after withdrawal from fluoxetine. As reported previously, the granule cell dematuration by fluoxetine includes a reduction of synaptic facilitation at the granule cell output, mossy fiber, synapse to the juvenile level. Mossy fiber synaptic facilitation examined electrophysiologically in acute hippocampal slices also remained suppressed after fluoxetine withdrawal and significantly correlated with the fluctuation of cage activity levels in individual mice. Furthermore, in mice lacking the 5-HT<sub>4 </sub>receptor, in which the granule cell dematuration has been shown to be attenuated, fluoxetine had no significant effect on the fluctuation of cage activity levels.</p> <p>Conclusions</p> <p>Our results demonstrate that the SSRI fluoxetine can induce marked day-to-day changes in activity levels of mice in the familiar environment, and that the dematuration of the hippocampal granule cells is closely associated with the expression of this destabilized behavior. Based on these results, we propose that the granule cell dematuration can be a potential cellular basis underlying switching-like changes in the behavioral state associated with SSRI treatments.</p

    Distance to G14.33-0.64 in the Sagittarius Spiral Arm: H2O Maser Trigonometric Parallax with VERA

    Full text link
    We report on trigonometric parallax measurements for the Galactic star forming region G14.33-0.64 toward the Sagittarius spiral arm. We conducted multi-epoch phase-referencing observations of an H2O maser source in G14.33-0.64 with the Japanese VLBI array VERA. We successfully detected a parallax of 0.893+/-0.101 mas, corresponding to a source distance of 1.12+/-0.13 kpc, which is less than half of the kinematic distance for G14.33-0.64. Our new distance measurement demonstrates that the Sagittarius arm lies at a closer distance of ~1 kpc, instead of previously assumed ~2-3 kpc from kinematic distances. The previously suggested deviation of the Sagittarius arm toward the Galactic center from the symmetrically fitted model (Taylor & Cordes 1993) is likely due to large errors of kinematic distances at low galactic longitudes. G14.33-0.64 most likely traces the near side of the Sagittarius arm. We attempted fitting the pitch angle of the arm with other parallax measurements along the arm, which yielded two possible pitch angles of i=34.7+/-2.7 degrees and i=11.2+/-10.5 degrees. Our proper motion measurements suggest G14.33-0.64 has no significant peculiar motion relative to the differential rotation of the Galaxy (assumed to be in a circular orbit), indicating that the source motion is in good agreement with the Galactic rotation.Comment: 14 pages, 7 figures, to appear in PASJ Vol. 62, No.

    Ecological and Histological Notes on the Luminous Springtail, <em>Lobella</em> sp. (Collembola: Neanuridae), Discovered in Tokyo, Japan

    Get PDF
    Some species of springtail (Collembola) are luminous, but it is not known whether light emitted by springtail is due to self-luminescence, feeding on luminous fungi, or accidental infection by luminous bacteria. To address this question, we characterized the luminescence of a luminous springtail, Lobella sp. (family Neanuridae) discovered in Tokyo, Japan. The emitted light was yellowish-green (540 nm) and was found to originate from tubercles on the thorax (segments II and III) and abdomen (segments I–VI) using a low-light imaging system. The luminescence persisted for several seconds but showed occasional oscillations in a laboratory environment. We also observed fat bodies containing eosin-positive granules under the integument of the tubercles in the tergum by hematoxylin and eosin (HE) staining that were not present in a nonluminous springtail (Vitronura sp.). The fat bodies in Lobella sp. are presumably photocytes analogous to the firefly lantern, and the eosin-positive granules are the likely source of bioluminescence, which implies that springtails are self-luminescent

    Theoretical study on novel electronic properties in nanographite materials

    Full text link
    Antiferromagnetism in stacked nanographite is investigated with using the Hubbard-type model. We find that the open shell electronic structure can be an origin of the decreasing magnetic moment with the decrease of the inter-graphene distance, as experiments on adsorption of molecules suggest. Next, possible charge-separated states are considered using the extended Hubbard model with nearest-neighbor interactions. The charge-polarized state could appear, when a static electric field is present in the graphene plane for example. Finally, superperiodic patterns with a long distance in a nanographene sheet observed by STM are discussed in terms of the interference of electronic wave functions with a static linear potential theoretically. In the analysis by the k-p model, the oscillation period decreases spatially in agreement with experiments.Comment: 8 pages; 6 figures; accepted for publication in J. Phys. Chem. Solids; related Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm
    corecore