38,915 research outputs found

    Co-NMR Knight Shift of NaxCoO2 \dot yH2O Studied in Both Superconducting Regions of the Tc-nuQ3 Phase Diagram Divided by the Nonsuperconducting Phase

    Full text link
    In the temperature (T)-nuQ3 phase diagram of NaxCoO2 \dot yH2O, there exist two superconducting regions of nuQ3 separated by the nonsuperconducting region, where nuQ3 is usually estimated from the peak position of the 59Co-NQR spectra of the 5/2-7/2 transition and well-approximated here as nuQ3~3nuQ,nuQ being the interaction energy between the nuclear quadrupole moment and the electric field gradient. We have carried out measurements of the 59Co-NMR Knight shift (K) for a single crystal in the higher-nuQ3 superconducting phase and found that K begins to decrease with decreasing T at Tc for both magnetic field directions parallel and perpendicular to CoO2-planes. The result indicates together with the previous ones that the superconducting pairs are in the spin-singlet state in both phases, excluding the possibility of the spin-triplet superconductivity in this phase diagram. The superconductivity of this system spreads over the wide nuQ3 regions, but is suppressed in the narrow region located at the middle point of the region possibly due to charge instability.Comment: 8 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of a human condensin SMC2 hinge domain with short coiled coils

    Full text link
    Kawahara, K., Nakamura, S., Katsu, Y., Motooka, D., Hosokawa, Y., Kojima, Y., Matsukawa, K., Takinowaki, H., Uchiyama, S., Kobayashi, Y., Fukui, K. & Ohkubo, T. (2010). Acta Cryst. F66, 1067-1070

    The onset of magnetism peaked around x=1/4 in optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) (Ln = La, Nd or Sm) superconductors

    Full text link
    The appearance of static magnetism, nanoscopically coexisting with superconductivity, is shown to be a general feature of optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) superconductor (Ln - lanthanide ion) upon isovalent substitution of Fe by Ru. The magnetic ordering temperature T_N and the magnitude of the internal field display a dome-like dependence on x, peaked around x=1/4, with higher T_N values for those materials characterized by a larger z cell coordinate of As. Remarkably, the latter are also those with the highest superconducting transition temperature (T_c) for x=0. The reduction of T_c(x) is found to be significant in the x region of the phase diagram where the static magnetism develops. Upon increasing the Ru content superconductivity eventually disappears, but only at x=0.6.Comment: accepted for publication in PR

    Fast recovery of the stripe magnetic order by Mn/Fe substitution in F-doped LaFeAsO superconductors

    Full text link
    75^{75}As Nuclear Magnetic (NMR) and Quadrupolar (NQR) Resonance were used, together with M\"{o}ssbauer spectroscopy, to investigate the magnetic state induced by Mn for Fe substitutions in F-doped LaFe1−x_{1-x}Mnx_{x}AsO superconductors. The results show that 0.50.5% of Mn doping is enough to suppress the superconducting transition temperature TcT_c from 27 K to zero and to recover the magnetic structure observed in the parent undoped LaFeAsO. Also the tetragonal to orthorhombic transition of the parent compound is recovered by introducing Mn, as evidenced by a sharp drop of the NQR frequency. The NQR spectra also show that a charge localization process is at play in the system. Theoretical calculations using a realistic five-band model show that correlation-enhanced RKKY exchange interactions between nearby Mn ions stabilize the observed magnetic order, dominated by Q1=(π,0)Q_1=(\pi,0) and Q2=(0,π)Q_2=(0,\pi) ordering vectors. These results give compelling evidence that F-doped LaFeAsO is a strongly correlated electron system at the verge of an electronic instability.Comment: 5 pages, 5 figures and 4 pages of supplemental materia

    Equivalence principle in the new general relativity

    Get PDF
    We study the problem of whether the active gravitational mass of an isolated system is equal to the total energy in the tetrad theory of gravitation. The superpotential is derived using the gravitational Lagrangian which is invariant under parity operation, and applied to an exact spherically symmetric solution. Its associated energy is found equal to the gravitational mass. The field equation in vacuum is also solved at far distances under the assumption of spherical symmetry. Using the most general expression for parallel vector fields with spherical symmetry, we find that the equality between the gravitational mass and the energy is always true if the parameters of the theory a1a_1, a2a_2 and a3a_3 satisfy the condition, (a1+a2)(a1−4a3/9)≠0(a_1+ a_2) (a_1-4a_3/9)\neq0. In the two special cases where either (a1+a2)(a_1+a_2) or (a1−4a3/9)(a_1-4a_3/9) is vanishing, however, this equality is not satisfied for the solutions when some components of the parallel vector fields tend to zero as 1/r1/\sqrt{r} for large rr.Comment: 18 pages, LaTeX, published in Prog. Theor. Phys. 96 No.5 (1996
    • …
    corecore