30,093 research outputs found

    Hidden gauge structure and derivation of microcanonical ensemble theory of bosons from quantum principles

    Full text link
    Microcanonical ensemble theory of bosons is derived from quantum mechanics by making use of a hidden gauge structure. The relative phase interaction associated with this gauge structure, described by the Pegg-Barnett formalism, is shown to lead to perfect decoherence in the thermodynamics limit and the principle of equal a priori probability, simultaneously.Comment: 10 page

    Global analysis by hidden symmetry

    Full text link
    Hidden symmetry of a G'-space X is defined by an extension of the G'-action on X to that of a group G containing G' as a subgroup. In this setting, we study the relationship between the three objects: (A) global analysis on X by using representations of G (hidden symmetry); (B) global analysis on X by using representations of G'; (C) branching laws of representations of G when restricted to the subgroup G'. We explain a trick which transfers results for finite-dimensional representations in the compact setting to those for infinite-dimensional representations in the noncompact setting when XCX_C is GCG_C-spherical. Applications to branching problems of unitary representations, and to spectral analysis on pseudo-Riemannian locally symmetric spaces are also discussed.Comment: Special volume in honor of Roger Howe on the occasion of his 70th birthda

    Co-NMR Knight Shift of NaxCoO2 \dot yH2O Studied in Both Superconducting Regions of the Tc-nuQ3 Phase Diagram Divided by the Nonsuperconducting Phase

    Full text link
    In the temperature (T)-nuQ3 phase diagram of NaxCoO2 \dot yH2O, there exist two superconducting regions of nuQ3 separated by the nonsuperconducting region, where nuQ3 is usually estimated from the peak position of the 59Co-NQR spectra of the 5/2-7/2 transition and well-approximated here as nuQ3~3nuQ,nuQ being the interaction energy between the nuclear quadrupole moment and the electric field gradient. We have carried out measurements of the 59Co-NMR Knight shift (K) for a single crystal in the higher-nuQ3 superconducting phase and found that K begins to decrease with decreasing T at Tc for both magnetic field directions parallel and perpendicular to CoO2-planes. The result indicates together with the previous ones that the superconducting pairs are in the spin-singlet state in both phases, excluding the possibility of the spin-triplet superconductivity in this phase diagram. The superconductivity of this system spreads over the wide nuQ3 regions, but is suppressed in the narrow region located at the middle point of the region possibly due to charge instability.Comment: 8 pages, 5 figures, submitted to J. Phys. Soc. Jp

    CP violation in supersymmetric model with non-degenerate A-terms

    Get PDF
    We study the CP phases of the soft supersymmetry breaking terms in string-inspired models with non-universal trilinear couplings. We show that such non-universality plays an important role on all CP violating processes. In particular these new supersymmetric sources of CP violation may significantly contribute to the observed CP phenomena in kaon physics while respecting the severe bound on the electric dipole moment of the neutron.Comment: 14 pages, Late

    Phonon density of states and compression behavior in iron sulfide under pressure

    Get PDF
    We report the partial phonon densities of states (DOS) of iron sulfide, a possible component of the rocky planet's core, measured by the Fe-57 nuclear resonant inelastic x-ray scattering and calculate the total phonon DOS under pressure. From the phonon DOS, we drive thermodynamic parameters. A comparison of the observed and estimated compressibilities makes it clear that there is a large pure electronic contribution in the observed compressibility in the metallic state. Our results present the observation of thermodynamic parameters of iron sulfide with the low-spin state of an Fe2+ ion at the high density, which is similar to the condition of the Martian core

    Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly

    Full text link
    Recent measurements of the positron/electron ratio in the cosmic ray (CR) flux exhibits an apparent anomaly, whereby this ratio increases between 10 and 100 GeV. We show that inhomogeneity of CR sources on a scale of order a kpc, can naturally explain this anomaly. If the nearest major CR source is about a kpc away, then low energy electrons (1\sim 1 GeV) can easily reach us. At higher energies (10\gtrsim 10 GeV), the source electrons cool via synchrotron and inverse-Compton before reaching Earth. Pairs formed in the local vicinity through the proton/ISM interactions can reach Earth also at high energies, thus increasing the positron/electron ratio. A natural origin of source inhomogeneity is the strong concentration of supernovae in the galactic spiral arms. Assuming supernova remnants (SNRs) as the sole primary source of CRs, and taking into account their concentration near the galactic spiral arms, we consistently recover the observed positron fraction between 1 and 100 GeV. ATIC's electron excess at 600\sim 600 GeV is explained, in this picture, as the contribution of a few known nearby SNRs. The apparent coincident similarity between the cooling time of electrons at 10 GeV (where the positron/electron ratio upturn), 10\sim 10 Myr, and the CRs protons cosmogenic age at the same energy is predicted by this model

    Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    Full text link
    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.Comment: Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, Vol.85, Issue 2, 2014 and may be found at http://dx.doi.org/10.1063/1.486364

    Te 5p orbitals bring three-dimensional electronic structure to two-dimensional Ir0.95Pt0.05Te2

    Full text link
    We have studied the nature of the three-dimensional multi-band electronic structure in the twodimensional triangular lattice Ir1-xPtxTe2 (x=0.05) superconductor using angle-resolved photoemission spectroscopy (ARPES), x-ray photoemission spectroscopy (XPS) and band structure calculation. ARPES results clearly show a cylindrical (almost two-dimensional) Fermi surface around the zone center. Near the zone boundary, the cylindrical Fermi surface is truncated into several pieces in a complicated manner with strong three-dimensionality. The XPS result and the band structure calculation indicate that the strong Te 5p-Te 5p hybridization between the IrTe2 triangular lattice layers is responsible for the three-dimensionality of the Fermi surfaces and the intervening of the Fermi surfaces observed by ARPES.Comment: 5 pages, 4 figure
    corecore