297 research outputs found

    Personality Traits in Miners with Past Occupational Elemental Mercury Exposure

    Get PDF
    In this study, we evaluated the impact of long-term occupational exposure to elemental mercury vapor (Hg(0)) on the personality traits of ex-mercury miners. Study groups included 53 ex-miners previously exposed to Hg(0) and 53 age-matched controls. Miners and controls completed the self-reporting Eysenck Personality Questionnaire and the Emotional States Questionnaire. The relationship between the indices of past occupational exposure and the observed personality traits was evaluated using Pearson’s correlation coefficient and on a subgroup level by machine learning methods (regression trees). The ex-mercury miners were intermittently exposed to Hg(0) for a period of 7–31 years. The means of exposure-cycle urine mercury (U-Hg) concentrations ranged from 20 to 120 μg/L. The results obtained indicate that ex-miners tend to be more introverted and sincere, more depressive, more rigid in expressing their emotions and are likely to have more negative self-concepts than controls, but no correlations were found with the indices of past occupational exposure. Despite certain limitations, results obtained by the regression tree suggest that higher alcohol consumption per se and long-term intermittent, moderate exposure to Hg(0) (exposure cycle mean U-Hg concentrations > 38.7 < 53.5 μg/L) in interaction with alcohol remain a plausible explanation for the depression associated with negative self-concept found in subgroups of ex-mercury miners. This could be one of the reason for the higher risk of suicide among miners of the Idrija Mercury Mine in the last 45 years

    Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    Full text link
    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.Comment: 8 pages, 3 figures; v2: replaced with journal versio

    Olfactory and trigeminal interaction of menthol and nicotine in humans

    Get PDF
    The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation

    Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans

    Get PDF
    BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians

    First Results of Fast One-dimensional Hybrid Simulation of EAS Using CONEX

    Full text link
    A hybrid simulation code is developed that is suited for fast one-dimensional simulations of shower profiles, including fluctuations. It combines the Monte Carlo simulation of high energy interactions with a fast numerical solution of cascade equations for the resulting distributions of secondary particles. Results obtained with this new code, called CONEX, are presented and compared to CORSIKA predictions.Comment: 4 pages, 4 figures, to appear in the proceedings of the XIII ISVHECRI, Pylos, 200

    Assessing Implicit Odor Localization in Humans Using a Cross-Modal Spatial Cueing Paradigm

    Get PDF
    Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans

    The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli

    Get PDF
    Increasing evidence about the central nervous representation of pain in the brain suggests that the operculo-insular cortex is a crucial part of the pain matrix. The pain-specificity of a brain region may be tested by administering nociceptive stimuli while controlling for unspecific activations by administering non-nociceptive stimuli. We applied this paradigm to nasal chemosensation, delivering trigeminal or olfactory stimuli, to verify the pain-specificity of the operculo-insular cortex. In detail, brain activations due to intranasal stimulation induced by non-nociceptive olfactory stimuli of hydrogen sulfide (5 ppm) or vanillin (0.8 ppm) were used to mask brain activations due to somatosensory, clearly nociceptive trigeminal stimulations with gaseous carbon dioxide (75% v/v). Functional magnetic resonance (fMRI) images were recorded from 12 healthy volunteers in a 3T head scanner during stimulus administration using an event-related design. We found that significantly more activations following nociceptive than non-nociceptive stimuli were localized bilaterally in two restricted clusters in the brain containing the primary and secondary somatosensory areas and the insular cortices consistent with the operculo-insular cortex. However, these activations completely disappeared when eliminating activations associated with the administration of olfactory stimuli, which were small but measurable. While the present experiments verify that the operculo-insular cortex plays a role in the processing of nociceptive input, they also show that it is not a pain-exclusive brain region and allow, in the experimental context, for the interpretation that the operculo-insular cortex splay a major role in the detection of and responding to salient events, whether or not these events are nociceptive or painful

    Impact of the introduction of ultrasound services in a limited resource setting: rural Rwanda 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade, utilization of ultrasound technology by non-radiologist physicians has grown. Recent advances in affordability, durability, and portability have brought ultrasound to the forefront as a sustainable and high impact technology for use in developing world clinical settings as well. However, ultrasound's impact on patient management plans, program sustainability, and which ultrasound applications are useful in this setting has not been well studied.</p> <p>Methods</p> <p>Ultrasound services were introduced at two rural Rwandan district hospitals affiliated with Partners in Health, a US nongovernmental organization. Data sheets for each ultrasound scan performed during routine clinical care were collected and analyzed to determine patient demographics, which ultrasound applications were most frequently used, and whether the use of the ultrasound changed patient management plans. Ultrasound scans performed by the local physicians during the post-training period were reviewed for accuracy of interpretation and image quality by an ultrasound fellowship trained emergency medicine physician from the United States who was blinded to the original interpretation.</p> <p>Results</p> <p>Adult women appeared to benefit most from the presence of ultrasound services. Of the 345 scans performed during the study period, obstetrical scanning was the most frequently used application. Evaluation of gestational age, fetal head position, and placental positioning were the most common findings. However, other applications used included abdominal, cardiac, renal, pleural, procedural guidance, and vascular ultrasounds.</p> <p>Ultrasound changed patient management plans in 43% of total patients scanned. The most common change was to plan a surgical procedure. The ultrasound program appears sustainable; local staff performed 245 ultrasound scans in the 11 weeks after the departure of the ultrasound instructor. Post-training scan review showed the concordance rate of interpretation between the Rwandese physicians and the ultrasound-trained quality review physicians was 96%.</p> <p>Conclusion</p> <p>We suggest ultrasound is a useful modality that particularly benefits women's health and obstetrical care in the developing world. Ultrasound services significantly impact patient management plans especially with regards to potential surgical interventions. After an initial training period, it appears that an ultrasound program led by local health care providers is sustainable and lead to accurate diagnoses in a rural international setting.</p

    Dissociated Representations of Pleasant and Unpleasant Olfacto-Trigeminal Mixtures: An fMRI Study

    Get PDF
    How the pleasantness of chemosensory stimuli such as odorants or intranasal trigeminal compounds is processed in the human brain has been the focus of considerable recent interest. Yet, so far, only the unimodal form of this hedonic processing has been explored, and not its bimodal form during crossmodal integration of olfactory and trigeminal stimuli. The main purpose of the present study was to investigate this question. To this end, functional magnetic resonance imaging (fMRI) was used in an experiment comparing brain activation related to a pleasant and a relatively unpleasant olfacto-trigeminal mixture, and to their individual components (CO2 alone, Orange alone, Rose alone). Results revealed first common neural activity patterns in response to both mixtures in a number of regions: notably the superior temporal gyrus and the caudate nucleus. Common activations were also observed in the insula, although the pleasant mixture activated the right insula whereas the unpleasant mixture activated the left insula. However, specific activations were observed in anterior cingulate gyrus and the ventral tegmental area only during the perception of the pleasant mixture. These findings emphasized for the firs time the involvement of the latter structures in processing of pleasantness during crossmodal integration of chemosensory stimuli

    Selective attention to the chemosensory modality

    Full text link
    Previous studies have shown that behavioral responses to auditory, visual, and tactile stimuli are modulated by expectancies regarding the likely modality of an upcoming stimulus (see Spence and Driver, 1997). In the present study, we investigated whether people can also selectively attend to the chemosensory modality (involving responses to olfactory, chemical, and painful stimuli). Participants made speeded spatial discrimination responses (left vs. right) to an unpredictable sequence of odor and tactile targets. Odor stimuli were presented to either the left or the right nostril, embedded in a birhinally applied constant airstream. Tactile stimuli were presented to the left or the right hand. On each trial, a symbolic visual cue predicted the likely modality for the upcoming target (the cue was a valid predictor of the target modality on the majority of trials). Response latencies were faster when targets were presented in the expected modality than when they were presented in the unexpected modality, showing for the first time that behavioral responses to chemosensory stimuli can be modulated by selective attention.
    corecore