38,719 research outputs found
Muon anomalous magnetic moment from effective supersymmetry
We present a detailed analysis on the possible maximal value of the muon
(g-2) (= 2 a_mu) within the context of effective SUSY models with R parity
conservation. First of all, the mixing among the second and the third family
sleptons can contribute at one loop level to the a_mu(SUSY) and tau -> mu gamma
simultaneously. One finds that the a_mu(SUSY) can be as large as (10-20)*10^-10
for any tan beta, imposing the upper limit on the tau -> mu gamma branching
ratio. Furthermore, the two-loop Barr-Zee type contributions to a_mu(SUSY) can
be significant for large tan beta, if a stop is light and mu and A_t are large
enough (O(1) TeV). In this case, it is possible to have a_mu(SUSY) upto
O(10)*10^-10 without conflicting with tau -> l gamma. We conclude that the
possible maximal value for a_mu(SUSY) is about 20*10^-10 for any tan beta.
Therefore the BNL experiment on the muon a_mu can exclude the effective SUSY
models only if the measured deviation is larger than \sim 30*10^-10.Comment: 10 pages, 3 figure
Singlet portal extensions of the standard seesaw models to dark sector with local dark symmetry: An alternative to the new minimal standard model
Assuming dark matter is absolutely stable due to unbroken dark gauge symmetry
and singlet operators are portals to the dark sector, we present a simple
extension of the standard seesaw model that can accommodate all the
cosmological observations as well as terrestrial experiments available as of
now, including leptogenesis, extra dark radiation of (resulting in
the effective number of neutrino species), Higgs
inflation, small and large scale structure formation, and current relic density
of scalar DM (). The Higgs signal strength is equal to one as in the SM for
unbroken case with a scalar dark matter, but it could be less than one
independent of decay channels if the dark matter is a dark sector fermion or if
is spontaneously broken, because of a mixing with a new neutral scalar
boson in the models.Comment: Presented at the 9th PATRAS Workshop on Axions, WIMPs and WISP
How To Determine SUSY Mass Scales Now
Currently available experimental data from electroweak precision observables
(EWPO), B-physics observables (BPO) and cosmological data can be combined to
extract the preferred value of SUSY mass scales. We review recent results on
the predictions of the masses of supersymmetric particles and the indirect
determination of the lightest Higgs boson mass. Special emphasis is put on
models going beyond the Constrained Minimal Supersymmetric Standard Model
(CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and
anomaloy mediated SUSY breaking.Comment: 6 pages, 6 figures, plenary talk given at SUSY08, Seoul, Kore
Neutral scalar Higgs bosons in the USSM at the LHC
We study the possibility of discovering neutral scalar Higgs bosons in the
-extended supersymmetric standard model (USSM) at the CERN Large Hadron
Collider (LHC), by examining their productions via the exotic quark loop in the
gluon fusion process at leading order. It is possible in some parameter region
that the neutral scalar Higgs bosons may have stronger couplings with the
exotic quarks than with top quark. In this case, the exotic quarks may
contribute more significantly than top quark in productions of the neutral
scalar Higgs bosons in the gluon fusion process. We find that there is indeed
some parameter region in the USSM that supports our speculations.Comment: 18 pages; changed content; JPhys
Partonic Effects in Heavy Ion Collisions at RHIC
Effects of partonic interactions in heavy ion collisions at RHIC are studied
in a multiphase transport model (AMPT) that includes both initial partonic and
final hadronic interactions.It is found that a large parton scattering cross
section is needed to understand the measured elliptic flow of pions and
two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest,
Hungary, March 3-7, 200
- …