27 research outputs found

    Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells

    Get PDF
    During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3-fold, fold discovery rate (FDR) >0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression, and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells.Facultad de Ciencias Exacta

    An ‘equalized cDNA library’ by the reassociation of short double-stranded cDNAs

    No full text

    Molecular mechanisms of pancreatic stone formation in chronic pancreatitis.

    Get PDF
    Chronic pancreatitis (CP) is a progressive inflammatory disease in which the pancreatic secretory parenchyma is destroyed and replaced by fibrosis. The presence of intraductal pancreatic stone(s) is important for the diagnosis of CP; however, the precise molecular mechanisms of pancreatic stone formation in CP were left largely unknown. CFTR is a chloride channel expressed in the apical plasma membrane of pancreatic duct cells and plays a central role in HCO3- secretion. In previous studies, we have found that CFTR is largely mislocalized to the cytoplasm of pancreatic duct cells in all forms of CP and corticosteroids normalizes the localization of CFTR to the proper apical membrane at least in autoimmune pancreatitis. From these observations, we could conclude that the mislocalization of CFTR is a cause of protein plug formation in CP, subsequently resulting in pancreatic stone formation.Considering our observation that the mislocalization of CFTR also occurs in alcoholic or idiopathic CP, it is very likely that these pathological conditions can also be treated by corticosteroids, thereby preventing pancreatic stone formation in these patients. Further studies are definitely required to clarify these fundamental issues

    Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles

    Get PDF
    AbstractThyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb and brain tissues during TH-induced and spontaneous Xenopus laevis metamorphosis. Amplified cRNA probes mixed with a universal standard were hybridized to a set of 21,807-sense strand 60-mer oligonucleotides on each slide representing the entries in X. laevis UniGene Build 48. Most of the up-regulated genes in hind limb and brain are the same. This reflects in part the fact that the initial response to TH induction in both tissues is cell proliferation. A large number of up-regulated genes in the limb and brain programs encode common components of the cell cycle, DNA and RNA metabolism, transcription and translation. Notch is one of the few genes that is differentially expressed exclusively in the brain in the first 48 h of TH induction studied in these experiments. The TH-induced gene expression changes in the tail are different from the limb and brain programs. Distinct muscle and fibroblast programs were identified in the tail. Dying muscle fibers in tail (marked by active caspase-3) up-regulate a group of genes that include proteolytic enzymes. At the climax of metamorphosis, tail muscle down-regulates more than half of the genes that encode the glycolytic enzymes in the cytoplasm and the tricarboxylic acid pathway and all five complexes of the electron transport system in mitochondria. These changes in gene expression precede the activation of caspase-3. Some of these same energy metabolism-related genes are up-regulated in the limb and brain programs by TH. A prominent feature of the tail fibroblasts is the down-regulation of several collagen and other extra cellular matrix genes and the up-regulation of hydrolytic enzymes that are responsible for dissolving the notochord and resorbing the tail

    Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression

    No full text
    Summary: Although pluripotent stem cells can generate various types of differentiated cells, it is unclear why lineage-committed stem/progenitor cells derived from pluripotent stem cells are decelerated and why the differentiation-resistant propensity of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived cells is predominant compared with the in vivo equivalents derived from embryonic/adult tissues. In this study, we demonstrated that iPSCs reprogrammed and maintained with three chemical inhibitors of the fibroblast growth factor 4-mitogen-activated protein kinase cascade and GSK3β (3i) could be differentiated into all three germ layers more efficiently than the iPSCs reprogrammed without the 3i chemicals, even though they were maintained with 3i chemicals once they were reprogrammed. Although the iPSCs reprogrammed with 3i had increased numbers of Zscan4-positive cells, the Zscan4-positive cells among iPSCs that were reprogrammed without 3i did not have an accelerated differentiation ability. These observations suggest that 3i exposure during the reprogramming period determines the accelerated differentiation/maturation potentials of iPSCs that are stably maintained at the distinct state. : Mouse iPSCs reprogrammed and maintained with three chemical inhibitors of the FGF4-MAPK cascade and GSK3β (3i; PD184352, CHIR99021, and SU5402) could be differentiated into all three germ layers efficiently and contain increased numbers of Zscan4, a 2-cell stage marker, positive cells. Keywords: induced pluripotent stem cells (iPSCs), culture conditions, 3i, differentiation potentials, Zscan4, 2-cell gene

    Mouse ovary developmental RNA and protein markers from gene expression profiling

    Get PDF
    AbstractTo identify genes involved in morphogenetic events during mouse ovary development, we started with microarray analyses of whole organ RNA. Transcripts for 60% of the 15,000 gene NIA panel were detected, and about 2000 were differentially expressed in nascent newborn compared to adult ovary. Highly differentially expressed transcripts included noncoding RNAs and newly detected genes involved in transcription regulation and signal transduction. The phased pattern of newborn mouse ovary differentiation allowed us to (1) extend information on activity and stage specificity of cell type-specific genes; and (2) generate a list of candidate genes involved in primordial follicle formation, including podocalyxin (Podxl), PDGFR-β, and a follistatin-domain-encoding gene Flst1. Oocyte-specific transcripts included many (e.g., Deltex2, Bicd2, and Zfp37) enriched in growing oocytes, as well as a novel family of untranslated RNA's (RLTR10) that is selectively expressed in early stage follicles. The results indicate that global expression profiling of whole organ RNA provides sensitive first-line information about ovarian histogenesis for which no in vitro cell models are currently available
    corecore